攀钢一号高炉后期强化冶炼实践

攀钢一号高炉后期强化冶炼实践

一、攀钢1号高炉炉役后期强化冶炼实践(论文文献综述)

吴官印,姜彦冰,蒋益,何冲,赵华,张智勇[1](2021)在《鞍钢鲅鱼圈2号4038 m3高炉炉役末期生产运行实践》文中研究指明介绍了鞍钢股份有限公司鲅鱼圈钢铁分公司2号4038 m3高炉的高炉冷却结构、原燃料条件和高炉侵蚀情况。针对高炉炉役末期炉缸出现的安全隐患,提出结合定向局部护炉和活跃炉缸的整体护炉理念。通过采取钛球护炉、炉缸压浆、堵风口、大风量和高鼓风动能冶炼、规范出铁操作、发展中心气流等护炉措施,并优化高炉操作,实现了高炉的长期稳定顺行。

郭先燊,张杰,陈晓军[2](2021)在《邯钢8号高炉炉役后期的护炉及强化冶炼》文中进行了进一步梳理对邯钢8号高炉炉役后期的护炉及强化冶炼实践进行了总结。根据8号高炉炉缸侧壁呈周期性"急性"侵蚀特征,在炉缸侧壁推算最薄处炭砖残余厚度仅401 mm的情况下,采取了强化冷却和监控、合理控制铁水硅钛含量、使用含钛炮泥、改善焦炭质量、调整出铁频次等常规护炉措施,在侧壁炭砖处于低温安全期时,仍然保持正常强化水平,甚至加风加氧进行强化冶炼。

卢正东[3](2021)在《高炉炉衬与冷却壁损毁机理及长寿化研究》文中认为现代高炉的技术方针是“长寿、高效、低耗、优质和环保”,其中“长寿”是实现高炉一切技术目标的基础。针对目前我国高炉普遍存在的炉缸炉底炉衬和高热负荷区域冷却壁的损毁问题,本文以武钢高炉为研究对象,首先确定了高炉炉衬与冷却壁长寿技术研究方法,然后分别研究了炉衬与冷却壁的损毁机理。在此基础上,进一步开展了炉缸结构设计与炉衬选型研究,探讨高热负荷区域铜冷却壁渣皮与热流强度监测系统的开发与应用,并提出了武钢高炉长寿优化措施,全文主要结论如下:武钢4号、5号高炉大修破损调查表明:炉缸炉底侵蚀特征主要表现为炉缸环缝带侵蚀和炉缸炉底象脚状侵蚀。通过炭砖热应力计算和岩相分析,炉缸环缝产生原因在于炉缸径向热应力较大,当炭砖性能较差时会产生微裂纹,在炉内高压下有害元素以蒸汽形式迁移至裂纹处发生液化,并与CO发生反应,生成氧化物、碳酸盐和石墨,形成炉缸环缝侵蚀带。通过炉底死焦柱受力分析与计算,死铁层较浅,死焦柱沉坐炉底,加剧铁水对炭砖侧壁的环流冲刷是造成炉缸炉底象脚状侵蚀的主要原因。针对炉役中期炉底温度异常升高问题,武钢采用钛矿护炉,停炉取样显微分析表明:沉积物中Ti的存在形式主要为Ti C、Ti N、Ti单质,并呈现颗粒皱褶和堆叠形貌,当其附着在炉缸侧壁和炉底时可有效缓解侵蚀进程。武钢生产实践表明,当钒钛矿用量2%~3%时,生铁含钛可达0.10~0.20%,渣铁流动性尚可,炉衬侵蚀速度得到控制。通过武钢5号、1号、7号和6号高炉开展大中修破损调查,对高炉铸铁冷却壁和铜冷却壁开展了力学性能、理化指标和显微结构分析,研究结果表明:铸铁冷却壁主要表现为纵、横裂纹引起的壁体开裂,严重部位存在壁体烧损甚至脱落,其损毁原因主要在于热应力造成的壁体开裂,以及高炉气氛下铸铁基体的氧化与生长。铜冷却壁损毁机理在于:高炉渣皮脱落后,煤气流和炉料与铜冷却壁热面直接接触,使壁体温度升高力学性能下降产生热变形,应力应变长期积累使壁体热面形成微小裂纹,然后在渣铁和煤气的渗透作用下发生熔损和脱落。对于炉腹段铜冷却壁底部水管处的损毁,原因还在于结构设计存在缺陷,冷却壁底部容易受到高温煤气流、渣铁流的冲刷,从而造成壁体的损毁。为满足高炉长寿要求,针对炉缸砌筑结构和炉衬选型问题,通过建立传热模型,采用数值模拟软件计算了高炉全生命周期炉缸传热效果,结果表明:在烘炉阶段,采用停水方式可保证烘炉效果。在炉役初期和中期,不同炉缸结构温度场相近,仅当进入炉役后期,温度差别才逐渐扩大。综合传热计算、热阻分析和建造成本,采用铸铁冷却壁可以满足炉缸传热的需要。针对“铸铁冷却壁+大块炭砖”与“铸铁冷却壁+复合炭砖”两种炉缸结构,研究了炭砖在不同导热系数下的炉缸温度场分布情况。当炉役初期陶瓷杯存在,大块炭砖导热系数为25W/(m·K)时,前者炭砖热面温度为571℃,后者为537℃,可基本杜绝有害元素化学反应的发生;当炉衬热面降至1150℃时,前者耐材残余厚度为850mm,后者为1060mm,均可满足高炉长寿服役要求。针对“铸铁冷却壁+大块炭砖”结构炉缸,研究了冷却比表面积对炉缸温度场的影响。结果表明不同冷却比表面积冷却壁对应的炉衬热面温度差别始终很小,即单纯提高冷却比表面积对降低炉缸温度场作用甚微,故在实际设计时应结合冷却壁制造和冷却水运行成本综合考虑,采用适宜高炉安全经济生产需要的冷却比表面积和水管参数。另外,对炉缸立式和卧式冷却壁优缺点进行了对比分析,从炉缸全周期使用需求考虑,建议采用立式冷却壁。最后,提出了提出了延长高炉炉缸寿命的技术对策及炉缸安全状况的评价方法。针对单独采用热电偶温度或水温差计算热流强度的不足,武钢采取计算和记录冷却壁水温差、热流强度、跟踪热电偶测温数据以及炉役末期炉壳贴片测温相结合的方法综合判断炉缸状况,收效良好。针对高热负荷区域冷却壁的损毁问题,首先对武钢7号高炉铜冷却壁渣皮进行了化学成分、物相形貌、及物理性能研究:其主要物相为黄长石、尖晶石和碳,渣皮中Al2O3含量较高,易形成高熔点的镁铝尖晶石。渣皮流动性温度为1584.1℃,粘度为1000m Pa·s(1550℃),导热系数约为1.5W/(m·K)。然后确定了武钢高炉渣皮厚度、热流强度、炉气温度的计算方法,开发了铜冷却壁渣皮厚度与热流强度监控系统,该系统目前运行稳定,可掌握高炉渣皮波动规律,快速研判高炉渣皮厚度、热流强度及炉型变化趋势,及时调整高炉操作模式。针对炉腹铸铁冷却壁损毁问题,采用增大炉腹冷却壁下部厚度,利用壁体上窄下宽的外型缩小炉腹角,有效遏制了冷却壁的损毁现象;针对炉腹铜冷却壁底部损毁问题,将进水管处改为凸台包覆设计,以防止煤气流从炉腹炉缸衔接处窜入烧坏进水管,从而解决了炉腹段铜冷却壁的损毁问题。冷却壁长寿服役的核心在于保持冷却壁始终处于无过热状态,武钢在高炉生产中,采取控制有害元素入炉,稳定用料结构,保持合理的热制度和造渣制度,通过上下部调剂和强化冷却系统管理,确保冷却壁渣皮厚度合理,从而有效延长了冷却壁的使用寿命。

曹勇,刘仁检[4](2021)在《强化冶炼与长寿在攀钢钒2号高炉的实践》文中认为攀钢钒2号高炉第四代炉役已连续生产12年,单位炉容产铁量达10940t/m3,在强化冶炼的生产模式下,冷却壁出现大量破损。认为:①高炉强化冶炼与长寿应统一来考虑,不应过分强调其中一面;②随着冶炼强度的提高,必须采取相应的安全措施;③双钟炉顶高炉由于上部调剂手段受限,必须调整进风系统风量分布偏析,确保煤气流分布合理;④炉皮开孔安装铜冷却器的方式要慎重,必须控制其数量,并充分考虑炉皮应力。

宋剑,唐炜,熊强,吴秋廷,韦东,兰二明[5](2020)在《攀钢钒有钟高炉大修分析》文中进行了进一步梳理文章对攀钢钒有钟高炉大修及装备特点进行分析,从改造炉体系统、优化攀钢特色长寿型复合炉衬结构,到升级出铁场除尘系统、矿槽除尘系统、增设炉顶放散消音及除尘设施、改造热风炉本体及双预热系统等,总结了改进型钒钛高炉蓄铁式主沟等一系列实用先进技术,以达到"环保、节能、稳定、高效、经济"的目标。

路鹏,裴生谦,王洪余,褚润林[6](2019)在《宣钢1#高炉炉役后期指标提升实践》文中研究指明对宣钢1#高炉炉役后期操作实践进行了总结。下部缩小风口面积、使用长风口,提高鼓风动能:上部优化布料矩阵,采用大矿批,稳定煤气流分布:维持合理的理论燃烧温度;阶段性钛矿护炉、堵风口等措施,克服了炉役后期不利条件的影响,在连续保持炉况14个月稳定顺行的基础上,技术经济指标不断提升,2019年2月份日产合格生铁完成6185t/d,入炉大焦比337kg/t,煤比170kg/t,为企业生产稳定及成本降低创造了良好条件。

何友国[7](2019)在《唐钢2000m3高炉铜冷却壁应用研究》文中提出本课题分析总结了高炉应用铜冷却壁后,在炉役前期由于铜冷却壁本身优良的挂渣能力,在高炉原燃料冶金性能变差、入炉粉率增加,高炉操作等因素作用下,造成高炉炉墙形成以铜冷却壁所挂渣皮为基础从下至上的结厚,高炉操作炉型受破坏;同时也分析总结了高炉炉役后期,因铜冷却壁因自身物理化学性质和高炉操作,导致铜冷却壁破损失效的因素。为了保证使用铜冷却壁高炉在炉役前期冶炼的正常运行,一是在判定和处理铜冷却壁结厚方面,唐钢2#高炉在学习借鉴国内高炉处理结厚经验的基础上,通过研究实践总结了一套技术。在判定炉墙结厚的35天内,高炉进行短时间休风45小时,在休风前分组集中插焦,加硅石,先烧掉铜冷却壁所挂渣皮,休风后对结厚方向的冷却壁冷却水改汽化,送风后送水,适当开放边缘气流,形成对结厚体的急冷急热冲击,有利于结厚体的脱落,以达到处理结厚的目的。二是在预防铜冷却壁结厚方面,唐钢2号高炉提出了全流程预防高炉结厚的理念。为了保证使用铜冷却壁高炉在炉役后期的安全运行,唐钢2000m3级高炉总结了铜冷却壁的破损原因、破损铜冷却壁漏水判定。在判定铜冷却壁破损漏水后,利用休风机会,加装铜冷却柱、勾管、冷却水管改工业水开路冷却等措施,来维持高炉的安全运行,从而达到延长一代炉龄,为高炉大修准备争取时间,减小高炉经济损失。图25幅;表21个;参56篇。

秦偲杰[8](2019)在《国内某1800m3高炉炉缸侵蚀行为与机理研究》文中研究指明随着高炉大型化的不断发展,高炉长寿技术的研究迫在眉睫,而高炉炉缸砖衬的侵蚀速率作为高炉寿命的限制性环节,受到了研究人员的密切关注。该高炉一代炉龄只维持了7年3个月,属于国内炉龄较短的高炉之一,通过对该高炉进行炉缸破损调查,研究炉缸的侵蚀行为与机理。本文对该高炉的炉役概况进行介绍及评价,从炉缸结构、耐火材料、冷却系统以及热风炉系统等多个方面,评价了该高炉设计的合理性,并简要说明了高炉炉役期的生产情况。其次,总结了高炉炉缸炉底的侵蚀炉型及侵蚀规律,并对炉缸内的侵蚀形貌、特征等进行分析;根据炉缸内环热电偶温度的最高点及其所对应冷端温度值,得到炉缸碳砖残余厚度的理论计算值,这对于分析碳砖的实际侵蚀状况具有一定的参考价值;并且,归纳了炉役末期炉缸侵蚀严重处即标高7.851m、8.653m与9.455m处热电偶的温度走势,结合当期铁水中Mn、Ti等元素对应含量变化,对炉缸各部位砖衬的实际侵蚀情况进行了综合的分析。基于所取炉缸炉底部位受到侵蚀的残余砖衬样品,选取具有代表性的碳砖、陶瓷垫与粘结层部位,对其进行元素、形貌、能谱和物相等分析:掌握炉缸内各位置碳砖的侵蚀特点,通过计算明确了Zn在炉缸内参与反应并破坏碳砖的机理,并分析了陶瓷垫的侵蚀特点及其保存相对较好的原因,同时对粘结层及其表面有害元素的赋存形态、富集程度等方面进行分析,探索其炉缸粘结层的保护作用机制。最后,对炉缸区的有害元素含量分布与焦炭质量这两个重要指标进行研究:(1)从炉缸纵向和横向两个方面对有害元素的空间分布特点进行分析,了解其在炉缸内的分布规律及对炉缸侵蚀的影响;(2)通过工业分析、形貌、能谱等综合分析手段,掌握焦炭达到炉缸区的质量,研究焦炭在炉缸内的劣化行为。

路鹏[9](2019)在《宣钢1号高炉炉役后期稳定生产实践》文中认为对宣钢1号高炉炉役后期稳定生产实践进行了总结.通过提升原燃料质量、缩小风口面积、使用长风口、优化布料矩阵、采用大矿批,量化炉前出渣铁管理等措施实现了炉役后期的稳定生产及指标提升.

苏爱民[10](2019)在《宣钢1号高炉炉役后期稳产高产实践》文中研究表明对宣钢1号高炉炉役后期稳产高产实践进行了总结。针对1号高炉炉役后期设备老化、冷却壁破损、炉缸侧壁温度升高等不利因素,通过加强原燃料检查及筛分管理、维持较高的风速和鼓风动能、上部优化布料矩阵、采用大矿批、细化炉前出渣铁管理、加强薄弱设备的重点维护等措施达到了自开炉以来最好的生产状态,实现了高炉长寿及稳产高产。

二、攀钢1号高炉炉役后期强化冶炼实践(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、攀钢1号高炉炉役后期强化冶炼实践(论文提纲范文)

(1)鞍钢鲅鱼圈2号4038 m3高炉炉役末期生产运行实践(论文提纲范文)

1 高炉概况
    1.1 高炉冷却结构
    1.2 原燃料条件
    1.3 炉缸侵蚀情况
2 护炉理念、措施及优化操作
    2.1 护炉理念
    2.2 护炉措施
        2.2.1 钛球护炉
        2.2.2 炉缸压浆
        2.2.3 堵风口
        2.2.4 大风量、高鼓风动能冶炼
        2.2.5 规范出铁操作
        2.2.6 发展中心气流
    2.3 优化操作
        2.3.1 细化备料及布料操作
        2.3.2 增加高炉富氧,提高冶炼强度
        2.3.3 坚持阶段性提煤降焦,主动降本增效
        2.3.4 提高鼓风压力,增加入炉风量
3 实践效果
4 结语

(3)高炉炉衬与冷却壁损毁机理及长寿化研究(论文提纲范文)

摘要
Abstract
引言
第1章 文献综述
    1.1 现代高炉长寿概况
    1.2 高炉长寿设计研究进展
        1.2.1 炉缸结构
        1.2.2 炉底死铁层
    1.3 高炉炉衬与冷却壁选材研究进展
        1.3.1 耐火材料
        1.3.2 冷却壁
    1.4 高炉损毁机理研究进展
        1.4.1 炉缸炉底损毁机理
        1.4.2 炉体冷却壁损毁机理
    1.5 高炉传热机理研究进展
        1.5.1 高炉炉缸炉底传热
        1.5.2 高炉炉体冷却壁传热
    1.6 本论文的提出和研究内容
        1.6.1 论文提出
        1.6.2 研究内容
第2章 高炉损毁机理研究方法
    2.1 高炉破损调查
        2.1.1 破损调查内容
        2.1.2 破损调查方法
    2.2 实验研究方法
        2.2.1 炭砖表征
        2.2.2 冷却壁表征
        2.2.3 渣皮表征
    2.3 高炉炉衬与冷却壁传热性能研究
        2.3.1 传热模型建立
        2.3.2 模型验证
第3章 武钢高炉炉缸炉底损毁机理研究
    3.1 高炉炉缸炉底损毁特征分析
        3.1.1 武钢4 号高炉破损调查(第3 代)
        3.1.2 武钢5 号高炉破损调查(第1 代)
    3.2 炉缸炉底损毁机理研究
        3.2.1 炉缸环缝侵蚀
        3.2.2 炉缸炉底象脚区域损毁
    3.3 高炉钛矿护炉研究
        3.3.1 Ti(C,N)形成热力学分析
        3.3.2 破损调查取样与表征
        3.3.3 武钢高炉钛矿护炉效果分析
    3.4 本章小结
第4章 武钢高炉冷却壁损毁机理研究
    4.1 高炉冷却壁损毁特征分析
        4.1.1 武钢5 号高炉破损调查(第1 代)
        4.1.2 武钢1 号高炉破损调查(第3 代)
        4.1.3 武钢7 号高炉破损调查(第1 代)
        4.1.4 武钢6 号高炉破损调查(第1 代)
    4.2 球墨铸铁冷却壁损毁机理研究
        4.2.1 力学性能分析
        4.2.2 显微结构分析
        4.2.3 损毁机理分析
    4.3 铜冷却壁损毁机理研究
        4.3.1 力学性能分析
        4.3.2 理化指标分析
        4.3.3 显微结构分析
        4.3.4 损毁机理分析
    4.4 本章小结
第5章 武钢高炉炉缸内衬设计优化研究
    5.1 高炉炉缸全生命周期温度场分析
        5.1.1 烘炉阶段炉缸温度场
        5.1.2 炉役初期炉缸温度场
        5.1.3 炉役全周期炉缸温度场
        5.1.4 炉役自保护期炉衬厚度
    5.2 炉缸传热体系结构优化研究
        5.2.1 炉缸炭砖传热体系优化
        5.2.2 炉缸冷却结构优化
    5.3 高炉炉缸长寿化设计与操作
        5.3.1 炉缸结构设计和选型
        5.3.2 高炉炉缸长寿操作技术
    5.4 本章小结
第6章 武钢高炉冷却壁长寿优化研究
    6.1 高炉冷却壁渣皮特性及行为研究
        6.1.1 渣皮物相组成及微观结构研究
        6.1.2 渣皮流动性分析
        6.1.3 渣皮导热性能及挂渣能力分析
    6.2 高炉冷却壁渣皮行为监测研究
        6.2.1 渣皮厚度及热流强度计算
        6.2.2 铜冷却壁渣皮监测系统研究
    6.3 高炉冷却壁长寿技术对策研究
        6.3.1 高炉冷却壁长寿设计优化
        6.3.2 高炉冷却壁操作优化
        6.3.3 高炉冷却壁渣皮厚度管控技术
    6.4 本章小结
第7章 结论与展望
    7.1 结论
    7.2 展望
本论文主要创新点
致谢
参考文献
附录1 攻读博士学位期间取得的科研成果
附录2 攻读博士学位期间参加的科研项目

(7)唐钢2000m3高炉铜冷却壁应用研究(论文提纲范文)

摘要
abstract
引言
第1章 文献综述
    1.1 研究高炉应用铜冷却壁的背景及意义
    1.2 高炉冷却设备介绍
        1.2.1 高炉冷却壁分类
        1.2.2 铜冷却壁和铸铁冷却壁的对比
    1.3 国内外高炉铜冷却壁应用情况
        1.3.1 国外高炉铜冷却壁应用情况
        1.3.2 国内高炉铜冷却壁应用情况
    1.4 本章小结
    1.5 本课题研究目标及研究内容
第2章 唐钢2000m~3高炉本体冷却设备概况
    2.1 冷却系统设计流程及参数
        2.1.1 冷却系统概况
        2.1.2 冷却系统技术参数
    2.2 唐钢2000m~3高炉冷却系统监控和管理制度
        2.2.1 工艺技术控制标准
        2.2.2 工艺技术控制措施
第3章 唐钢2~#高炉炉役前期铜冷却壁应用研究
    3.1 铜冷却壁对高炉操作炉型的影响
        3.1.1 铜冷却壁对高炉操作炉型影响机理
        3.1.2 铜冷却壁对高炉操作炉型影响的矛盾性
        3.1.3 唐钢2~#高炉铜冷却壁对高炉操作炉型影响现状
    3.2 使用铜冷却壁后唐钢高炉炉墙结厚的征兆
        3.2.1 炉墙温度低
        3.2.2 料尺有尺差
        3.2.3 十字测温边缘低
        3.2.4 炉顶成像边缘出现亮光
        3.2.5 炉缸工作不均
    3.3 唐钢2~#高炉炉墙结厚的原因分析
        3.3.1 高炉大修扩容后炉型不合理
        3.3.2 原燃料
        3.3.3 操作因素导致高炉结厚
    3.4 处理唐钢2~#高炉铜冷却壁结厚方法及实践
        3.4.1 高炉结厚处理的一般原则
        3.4.2 唐钢2~#高炉处理结厚实践
    3.5 预防唐钢2~#铜冷却壁结厚的措施
        3.5.1 实施全流程原燃料整粒工作
        3.5.2 高炉制定原燃料管理措施
        3.5.3 实施烧结系统入机料碱金属和锌元素管控工作
        3.5.4 稳态烧结工艺技术的实施稳定烧结矿冶金性能
        3.5.5 高炉操作制度的合理管控
        3.5.6 建立高炉结厚预警模型
    3.6 应对铜冷却壁结厚效果
    3.7 本章小结
第4章 唐钢1~#高炉炉役后期铜冷却壁应用研究
    4.1 概述
    4.2 铜冷却壁破损原因分析
        4.2.1 铜冷却壁化学侵蚀
        4.2.2 铜冷却壁应力的破损作用
        4.2.3 铜冷却壁磨损
        4.2.4 操作制度的影响
    4.3 铜冷却壁在唐钢1~#高炉炉役末期破损征兆及应对措施
        4.3.1 冷却壁破损征兆
        4.3.2 冷却壁破损应对措施
        4.3.3 铜冷却壁破损期高炉操作制度调整和管理措施
    4.4 实施效果
    4.5 本章小结
结论
参考文献
致谢
导师简介
企业导师简介
作者简介
学位论文数据集

(8)国内某1800m3高炉炉缸侵蚀行为与机理研究(论文提纲范文)

摘要
abstract
1 绪论
    1.1 国内外高炉长寿技术现状
        1.1.1 国外高炉长寿技术现状
        1.1.2 国内高炉长寿技术现状
    1.2 高炉炉缸侵蚀的理论分析
        1.2.1 有害金属侵蚀
        1.2.2 炉缸结构设计
        1.2.3 死铁层深度与铁水冲刷溶蚀
        1.2.4 炉缸热流强度与冷却强度
        1.2.5 炉缸环裂
    1.3 高炉炉缸维护
        1.3.1 炉缸状态监控
        1.3.2 护炉措施
        1.3.3 操作制度
    1.4 研究背景与研究内容
        1.4.1 研究背景
        1.4.2 研究内容
2 高炉炉役评价
    2.1 炉缸炉底结构
    2.2 炉缸炉底耐火材料参数
    2.3 炉缸冷却设备及系统
    2.4 热风炉系统
    2.5 炉役期生产及检修概况
    2.6 本章小结
3 高炉炉缸的侵蚀行为
    3.1 炉缸侵蚀炉型与形貌分析
        3.1.1 炉缸侵蚀炉型
        3.1.2 炉缸砖衬侵蚀形貌
        3.1.3 炉底陶瓷垫侵蚀形貌
    3.2 碳砖残余厚度计算与分析
        3.2.1 炉缸碳砖侵蚀厚度计算
        3.2.2 计算结果与分析
    3.3 炉役末期热电偶温度分析
        3.3.1 热电偶温度变化趋势
        3.3.2 铁水物理热、Si含量与Mn含量变化趋势
    3.4 本章小结
4 高炉炉缸砖衬微观侵蚀分析
    4.1 炉缸砖衬侵蚀特征
        4.1.1 炉缸碳砖侵蚀特征
        4.1.2 炉底陶瓷垫侵蚀特征
    4.2 炉缸砖衬侵蚀微观分析
        4.2.1 碳砖侵蚀微观分析
        4.2.2 陶瓷垫侵蚀微观分析
    4.3 炉缸粘结层微观分析
        4.3.1 炉缸粘结层形貌
        4.3.2 炉缸粘结层微观分析
    4.4 本章小结
5 炉缸有害元素分布与焦炭质量分析
    5.1 有害元素空间分布
        5.1.1 纵向分布
        5.1.2 横向分布
    5.2 焦炭质量分析
        5.2.1 工业分析
        5.2.2 焦炭微观形貌分析
        5.2.3 焦炭灰分成分分析
    5.3 本章小结
6 结论
参考文献
致谢
附录 攻读研究生期间主要发表的论文情况

(9)宣钢1号高炉炉役后期稳定生产实践(论文提纲范文)

0 引言
1 稳定生产措施
    1.1 提升原燃料质量
        1.1.1 提高烧结矿品位
        1.1.2 提高球团矿质量
        1.1.3 焦炭控灰降硫
    1.2 缩小风口面积、加长风口长度、提高风速及鼓风动能
    1.3 优化装料制度, 改善煤气流分布
    1.4 提高炉顶压力
    1.5 选择合理的热制度及造渣制度
    1.6 量化炉前出渣铁管理
2 效果
3 结语

(10)宣钢1号高炉炉役后期稳产高产实践(论文提纲范文)

1 高炉炉役后期稳产高产技术措施
    1.1 做好原燃料检查及筛分管理
        1.1.1 及时掌握原燃料变化, 做好应对措施
        1.1.2 强化筛分管理
    1.2 送风制度调整
    1.3 装料制度调整
    1.4 热渣制度调整
    1.5 加强炉体维护管理
        1.5.1 安装微型铜冷却器
        1.5.2 定期灌浆造衬, 加强维护
2 应用效果
3 结语

四、攀钢1号高炉炉役后期强化冶炼实践(论文参考文献)

  • [1]鞍钢鲅鱼圈2号4038 m3高炉炉役末期生产运行实践[J]. 吴官印,姜彦冰,蒋益,何冲,赵华,张智勇. 鞍钢技术, 2021(04)
  • [2]邯钢8号高炉炉役后期的护炉及强化冶炼[J]. 郭先燊,张杰,陈晓军. 炼铁, 2021(03)
  • [3]高炉炉衬与冷却壁损毁机理及长寿化研究[D]. 卢正东. 武汉科技大学, 2021(01)
  • [4]强化冶炼与长寿在攀钢钒2号高炉的实践[J]. 曹勇,刘仁检. 炼铁, 2021(01)
  • [5]攀钢钒有钟高炉大修分析[J]. 宋剑,唐炜,熊强,吴秋廷,韦东,兰二明. 中国钢铁业, 2020(05)
  • [6]宣钢1#高炉炉役后期指标提升实践[A]. 路鹏,裴生谦,王洪余,褚润林. 智能技术在炼铁上的应用研讨会论文集, 2019
  • [7]唐钢2000m3高炉铜冷却壁应用研究[D]. 何友国. 华北理工大学, 2019(04)
  • [8]国内某1800m3高炉炉缸侵蚀行为与机理研究[D]. 秦偲杰. 西安建筑科技大学, 2019(06)
  • [9]宣钢1号高炉炉役后期稳定生产实践[J]. 路鹏. 江西冶金, 2019(01)
  • [10]宣钢1号高炉炉役后期稳产高产实践[J]. 苏爱民. 四川冶金, 2019(01)

标签:;  ;  ;  ;  ;  

攀钢一号高炉后期强化冶炼实践
下载Doc文档

猜你喜欢