一、西天山北部地区成矿规律初探(论文文献综述)
臧忠江[1](2020)在《西昆仑与西南天山结合部晚古生代沉积型锰矿床成矿规律与成矿预测》文中研究表明研究区位于西昆仑和西南天山两个构造带的结合部,两个研究区带分列于其南北两侧,南侧的玛尔坎苏矿带呈近东西向沿着帕米尔北东缘展布,隶属于西昆仑构造带;北侧的吉根成矿区呈北北东向展布,隶属于西南天山构造带。近年来,在新疆维吾尔自治区克孜勒苏柯尔克孜自治州(简称克州)不断发现晚古生代沉积型锰矿床(点),玛尔坎苏一带有奥尔托喀讷什、玛尔坎土和穆呼等锰矿床,已成为新疆最重要的锰矿带。吉根地区的博索果嫩套、铁克列克等锰矿点呈多点带状分布,找矿潜力较大。但是,由于这些矿带发现时间不长,基础地质和矿床地质的研究程度较低,吉根地区研究程度基本属于空白。因此,开展研究区晚古生代岩相古地理和沉积环境研究,开展研究区容矿地层的对比以及构造格架的研究,探讨锰矿的富集机制、成矿演化及成矿规律,对于新疆克州及其周边国家锰矿资源评价与富锰矿找矿勘查具有重要指导意义。西昆仑与西南天山结合部沉积型锰矿床,锰矿体常常以层状产出,严格受一定时代的含锰地层(下泥盆统和上石炭统)控制,含锰岩系多样,有以硅质岩为主的,还有碳酸盐岩型居多的。锰矿床形成后受后期构造改造的影响,锰矿体形态、产状发生明显变化。玛尔坎苏锰矿带内火山—沉积型锰矿床(锰质内源外成)伴有块状硫化物矿化(铜锌)。玛尔坎苏锰矿带锰矿床主要产于上石炭统喀拉阿特河组(C2k),按其岩性分为三个岩性段:(1)生物碎屑灰岩,(2)灰绿色岩屑砂岩,(3)泥质灰岩夹薄层状灰岩,是区内最主要的沉积型锰矿赋矿层位。吉根一带锰矿床(点)产于下泥盆统萨瓦亚尔顿组(D1s),该组为一套浅变质复理石建造,分为四个岩性段:(1)底部粗碎屑岩段,(2)下部浅变质泥岩—硅质岩—细碎屑岩段,(3)中部碳酸盐岩段,(4)上部浅变质硅质岩—泥岩—细碎屑岩夹碳酸盐岩段。在下部硅质岩和中部碳酸盐岩中均发现锰矿体。玛尔坎苏锰矿带奥尔托喀讷什锰矿床Fe/Ti比值平均为29.79;锰矿石Al/(Al+Fe+Mn)比值为0.14~0.19(平均为0.165),围岩的在0.29~0.74之间,具有热水沉积特征。矿石的Y/Ho比值平均为25.69,与深海热水流体的基本一致。含锰岩系下伏的早石炭世玄武岩锰含量在1000×10-6~1500×10-6之间,锰的背景值较高,说明锰源与深部来源有关。矿石REE总量平均为99.03×10-6,明显偏低,表明成矿过程中有热液活动。碳酸锰矿石及其顶、底板灰岩LREE/HREE比值平均为3.25。锰矿石δCe值平均为1.15;围岩δCe值平均为0.83。这可能是早石炭世地质活动频繁,海底出现基性火山岩喷发等海底火山作用引起的。矿石δEu值平均为0.95,围岩δEu值平均为0.89。均呈微弱的Eu负异常。锰矿床矿体顶、底板围岩δ13C在0.26‰~-2.73‰之间,与海相碳酸盐δ13C值相近。碳酸锰矿石δ13C在-9.47‰~-21.67‰之间,变化范围较大,说明锰成矿中存在有机物降解过程,造成碳同位素分馏。δ13CPDB值偏负,推断锰矿石的形成是有机质参与造成的。锰矿石δ18O值在-5.2‰~-11.45之间。计算的围岩温度集中在68.1~78.2℃之间;锰矿石温度范围在42.7~84.1℃之间,也说明锰矿床的形成具有热水沉积特征。吉根一带锰矿床Fe/Ti值平均为24.60;Al/(Al+Fe+Mn)值平均为0.24,REE总量平均为57.99ppm。锰矿石及其顶、底板围岩LREE/HREE比值平均为9.04。锰矿石δCe值平均为1.17,围岩δCe值平均为1.02,说明锰在沉积成岩—成矿过程中受到海底火山作用影响。矿石δEu值平均为1.09,围岩δEu值平均为0.96。显示为弱的Eu正异常,反映出岩/矿石沉淀时有海底热水作用参与。玛尔坎苏锰矿带自早石炭世起,在持续拉张的伸展环境下形成下石炭统乌鲁阿特组巨厚的基性—中性火山岩。至晚石炭世火山活动基本结束,构造沉积盆地内发育一套海相碳酸盐岩组合,古地理环境属于浅海沉积盆地。锰的成矿作用分为沉积成岩期、热液改造期和表生氧化期。成矿模式为:由火山口(火山喷溢VMS)、近源(火山口)以火山—沉积为主导,到远源(火山口两侧)以化学沉积为主的锰多金属矿成矿作用演变过程。西南天山吉根周边下泥盆统萨瓦亚尔顿组下部和底部对应于河口三角洲沉积环境;中部代表较深水的浅海沉积环境;而上部则是浅海沉积环境。锰矿床的形成经历了沉积成岩期、变质改造期和表生氧化期三个阶段,含矿岩系具有热水沉积特点,锰质来源与其关系密切,锰矿床属于热水沉积—变质成因。对研究区及其外围开展以构造要素及其对锰矿体制约(改造)为目的的野外调查研究,构建了研究区的构造格架。玛尔坎苏锰矿带穆呼—玛尔坎土一带的构造轮廓整体为一个近东西向的玛尔坎苏河复背斜,它自北向南包含玛尔坎苏河背斜—玛尔坎土倒转向斜—坦迭尔倒转背斜—玛尔坎阿塔乔库倒转背斜等次级褶皱,倒转褶皱轴面均向南倾斜,反映自南向北的推覆动力。玛尔坎土向斜是研究区主要赋矿构造。在穆呼—玛尔坎土以西,厘定了12线的石炭系构造形态,确立了坦迭尔背斜核部,其南翼向东延伸,划分出南部新的含锰岩带,拓宽了找锰矿范围。在吉根锰矿远景区确定了泥盆系构成一系列NNE向—SN向的褶皱构造,中部的艾提克复式背斜向东、西两翼均有托格买提组下段碳酸盐岩的重复出现,西侧更有托格买提组上段碎屑岩的分布,反映出一个中间老两侧新的背斜构造格局。东部与上—顶志留系塔尔特库里组接触的是下泥盆统萨瓦亚尔顿组偏上层位。东部一系列以托格买提组下段为核部的向斜构造,识别出两个倒转的向斜构造,对于找锰矿是最为有利的。西昆仑和西南天山结合部沉积型锰矿床具有以下特点:(1)与海相火山作用有关的锰成矿作用表现出“内源外成”特点。成矿物质主要来自海底火山喷发所引起的深源富锰含烃热液(水)喷流沉积。(2)都有热水溶液参与成矿的迹象,玛尔坎苏锰矿带属于近火山—沉积建造,含锰建造中伴有火山岩及火山碎屑岩;吉根一带则属于远离火山—沉积建造,含锰建造以陆源碎屑岩类为主,偶见少量火山物质,但是地球化学特征显示热水沉积特层。(3)容矿岩石均有硅酸盐岩和碳酸盐岩。岩石类型富含炭质,硅质岩中出现复杂的微量元素组合。吉根锰矿远景区北部博索果嫩套是硅质岩砂页岩容矿,南部克尔克昆果依山则是碳酸盐岩容矿。玛尔坎苏锰矿带坦迭尔锰矿点产于火山岩建造顶部的凝灰岩中。(4)锰矿石类型均为富锰矿石,但是两个成矿带矿石的矿物组合有明显差别。玛尔坎苏锰矿带以原生碳酸锰矿石为主,少量次生氧化锰矿石。矿石中菱锰矿和钙菱锰矿居多,少量肾硅锰矿和硫锰矿。而吉根锰矿远景区矿石中锰的硅酸盐相占较大比例。(5)锰矿具有成群(带)分布特点,吉根锰矿远景区可能是被动性大陆边缘的岛弧沉积岩带火山弧间洼地—弧后盆地,玛尔坎苏锰矿带为主动性大陆边缘的岛弧火山—沉积岩带,属于浅海较深水洼地。两者均属于复杂的拉张构造环境中生成的海底热水沉积型锰矿床。(6)锰矿体形成后明显受后期构造运动所改造,构造改造是矿体的结构和矿物组成由简单、完整到复杂、破损的变化过程。现存的锰矿体多定位于向斜构造的核部和两翼。(7)锰矿成矿时间均属于晚古生代,玛尔坎苏锰矿带以石炭纪为主,二叠纪次之;吉根地区锰矿的成锰时代为早泥盆世。锰的聚集具有区域同时性。对比玛尔坎苏锰矿带与吉根锰矿远景区的区域地质背景、含锰建造类型、成锰期沉积相和沉积环境,以及探明的富锰矿石资源和构造改造程度等成矿要素表明,前者具备形成大中型富锰矿床的良好条件,其中,长期大量的中基性岩浆喷发以及火山熔岩和凝灰岩与海水的水岩交换提供充足的Mn源,而火山岩建造之上的相对沉积凹陷区域起到很好的聚矿作用,以及充足的生物有机质对矿质的沉淀和固着等尤为重要,因此区域找矿潜力较大;而后者成矿条件较为复杂,在锰源、含锰建造和古地理环境、成矿后构造改造等方面对成锰矿及矿体定位的贡献较小,增大了找矿难度。根据以上研究成果,结合研究区物探、化探和遥感找矿信息,在玛尔坎苏锰矿带划分出3个Ⅰ级找矿靶区和1个Ⅱ级找矿靶区。在吉根锰矿远景区提出3个值得进一步找矿区段:即Ⅰ-1靶区、Ⅰ-2靶区和Ⅱ-1靶区。
宋哲[2](2020)在《东天山阿齐山—雅满苏成矿带海相火山岩型铁矿成矿作用与成矿模式研究》文中认为火山岩型铁矿作为我国主要的铁矿床类型之一,具有规模大、品位高的特征,有较高开采价值。陆相火山岩型铁矿主要集中于长江中下游成矿带的宁芜-庐枞地区,海相火山岩型铁矿主要分布于新疆的西天山、东天山、阿尔泰等地。西天山阿吾拉勒成矿带的海相火山岩型铁矿不仅近年来找矿取得巨大突破,而且研究工作深入,建立了包括岩浆型(塔尔塔格铁矿)、热液型(智博、查岗诺尔、松湖、备战等铁矿)、热液-沉积型(式可布台铁矿)3种铁矿化类型的矿床成矿系列和成矿模式。东天山与西天山类似,在阿齐山-雅满苏成矿带中也发现了雅满苏、沙泉子、黑尖山、红云滩、赤龙峰等一系列具有经济价值的海相火山岩型铁矿,但是对成矿过程以及区域成矿规律的研究程度较低,影响了对进一步找矿潜力的评估。因此本文以新疆东天山阿齐山-雅满苏海相火山岩型铁矿带中黑尖山铁矿床、雅满苏铁矿床、赤龙峰铁矿床分别作为矿浆型铁矿化、岩浆热液交代-充填铁矿化、热液-沉积型铁矿化的典型代表,通过描述每个矿化类型典型矿床的含矿构造,矿体和矿石的结构构造和矿物组合以及围岩蚀变特征,将东天山阿齐山-雅满苏成矿带海相火山岩型铁矿从成矿作用、构造背景、赋矿围岩、蚀变类型、矿物组合、矿体特征、矿石矿物地球化学特征等方面进行全面系统的总结,探讨了成矿机理,建立了区域成矿模式。在黑尖山铁矿床矿体围岩安山质角砾熔岩中发现五种富铁团块(钠长石-磁铁矿型、钠长石-钾长石-磁铁矿型、钾长石-磁铁矿型、绿帘石-磁铁矿型和石英-磁铁矿型),结合富铁团块中磁铁矿电子探针显微分析,得出五种富铁团块分别代表岩浆-水热系统的不同演化阶段:依次为钠长石磁铁矿型富铁团块为岩浆活动产物;钠长石钾长石磁铁矿型和钾长石磁铁矿型富铁团块为岩浆-热液过渡的产物;而绿帘石磁铁矿型和石英磁铁矿型富铁团块则可能为热液作用的产物。且绿帘石磁铁矿型和石英磁铁矿型富铁团块的磁铁矿成分特征与矿石矿物中磁铁矿的成分特征最为相似,所以绿帘石磁铁矿型和石英磁铁矿型富铁团块是残余富铁矿浆结晶且受热液完全交代产物。建立了黑尖山铁矿床富铁团块的形成模型:是由富水且氧化的富铁矿浆在寄主角砾状安山质熔岩的裂缝中结晶并释放出气体,形成囊状和杏仁状的富铁团块。雅满苏铁矿床为岩浆热液交代-充填型铁矿床,对矿床含矿玄武岩进行全岩微量元素和Sr-Nd同位素分析,结果表明雅满苏玄武岩样品均属于弧岩浆范畴,形成于弧后盆地环境,同时玄武岩在形成过程中受到了洋壳物质的交代。利用磁铁矿单矿物Fe,O同位素和原位主量元素和微量元素对雅满苏铁矿和同处一个成矿带的多头山铁矿和骆驼峰铁矿研究,根据主要矿物形成的先后顺序将岩浆热液交代-充填铁矿化矿石中磁铁矿分为三种,根据不同类型矿石中磁铁矿组分和铁同位素分馏特征不同,表明成矿环境有两种:岩浆热液环境和后期热液环境。因此阿齐山-雅满苏火山岩型铁矿带热液型铁矿床具有岩浆作用到热液作用的连续成矿过程。赤龙峰铁矿床为热液-沉积型铁矿床,对该矿床开展了主要矿石矿物赤铁矿的单矿物Fe,O同位素分析和原位主量元素和微量元素测试以及与矿石中主要矿物重晶石S同位素的分析,提出重晶石和赤铁矿均为为海相环境。且成矿物质的富集与热液蚀变无直接联系,但矿床的主要的成分硅、铁以化学沉积物的形式析出,具有热液特征。表明硅、铁是来源于与海底火山作用有关的岩浆热液流体。综合新疆东天山阿齐山-雅满苏海相火山岩型铁矿带中三种典型铁矿化类型,认为这三种铁矿化类型反映了东天山阿齐山-雅满苏成矿带中海相火山岩型铁矿的一个较为完整的火山活动及成矿的过程,具体可分为:1)母岩浆形成阶段(成矿母岩浆形成阶段);2)富铁矿浆分离结晶阶段(黑尖山铁矿床中富铁团块形成阶段);3)岩浆热液成矿阶段(区域绝大多数与雅满苏铁矿相似的海相火山岩型铁矿形成阶段);4)热液-沉积成矿阶段(赤龙峰铁矿形成阶段)。因此东天山阿齐山-雅满苏海相火山岩型铁矿成矿带的不同矿化类型是基于时间变化(火山活动早晚、岩浆演化的不同阶段)和空间差异(以火山机构为载体,成矿位置处于火山口的近端至远端的不同)所造成的,代表的是一个连续,具有密切联系的成矿过程。
满荣浩[3](2020)在《西天山赛里木地区元古宙铅锌成矿作用研究》文中研究表明20世纪50年代哈萨克斯坦境内Tekeli超大型铅锌矿床发现以来,与之相邻的我国新疆西天山赛里木微地块的铅锌矿找矿突破备受期待。近年在赛里木微地块中陆续发现了一系列元古界沉积岩容矿的铅锌矿床(点),托克赛、哈尔达坂和四台-海泉是规模最大的三个矿床。本文在详细的区域地质调查和矿床观测基础上,从成矿环境、矿床地质、成矿物质来源、成矿流体特征等开展研究,建立了区域和矿床成矿模式,总结了区域铅锌成矿规律,探讨了关键控矿要素,旨在服务于赛里木地区铅锌找矿持续突破。论文研究取得以下几点认识:(1)新元古代伸展构造背景下,赛里木微地块内发育一系列大陆边缘裂陷盆地细碎屑岩-碳酸盐岩建造,是喷流沉积型铅锌矿产出的关键层位;其中托克赛铅锌矿产于温泉群的大理岩,哈尔达坂铅锌矿产于哈尔达坂群白云岩-含碳/钙质板岩和硅质岩,四台-海泉铅锌矿产于库松木切克群泥晶灰岩-含碳质灰岩;铅锌矿体主体呈似层状与赋矿岩系整合互层产出,发育层纹-条带状矿石,显示出同沉积成因的特征;(2)托克赛矿床硅质岩具有较高的δ30Si值(1.3~2.2‰),LREE呈现轻亏损,Ce呈负异常,结合其偏低的Y/Ho比值(集中于30.48~48.57)和Eu轻微正异常的特征,指示硅质岩具有海水和海底热液混合成因的特征,进一步表明新元古代区域上存在海底热液活动;Fe-Al-Ti元素特征和La/Ce比值指示成矿作用发生于靠近大陆边缘裂陷盆地环境。(3)哈尔达坂矿床闪锌矿流体包裹体测温结果显示成矿具有中-低温(60~263℃)和中-低盐度(0.18~18.22wt.%)特征;与闪锌矿共生的热液白云石、铁白云石和方解石的C-O同位素特征具有海相碳酸盐岩溶解来源的特征,指示成矿流体主要来自浓缩海水。(4)托克赛和哈尔达坂铅锌矿床的矿石硫化物S同位素组成(δ34S值分别为8.10‰~20.42‰和2.6‰~1 5.9‰),结合对成矿温度的分析,指示还原硫可能主要来源于海水的硫酸盐的热化学还原作用(TSR);矿石硫化物Pb同位素组成指示,两个矿床的成矿金属主要来源于盆地的碎屑沉积物和中-基性火山岩以及碳酸盐岩;四台-海泉矿床的菱锌矿等氧化矿石应为硫化物经过表生氧化作用形成,矿区内的碳质条带可能为初始矿化提供了还原剂。(5)区域构造和矿床地质对比研究表明,哈萨克斯坦Tekeli世界级成矿带向东延伸进入我国新疆赛里木微地块,提出鄂尔托赛尔、奥尔塔克、阿克阔措、喀拉达坂和东卡尔阿依等地区铅锌找矿值得高度关注;中-上元古界中含碳质的碳酸盐岩-细碎屑岩建造、同沉积断裂、硅质岩、热液角砾岩是有利的找矿标志。
展新忠[4](2019)在《新疆赛博铜矿床成矿作用及找矿勘查研究》文中指出本论文是国家“十二五”科技支撑项目“新疆重要成矿带战略性矿产资源预测与靶区评价”(2011BAB06B0803)的成果之一。新疆赛博铜矿床发现之初曾被命名为喇嘛苏外围铜矿床,它与喇嘛苏铜矿床同产于喇嘛苏岩体,空间上毗邻,同属于国家“十三五”深地项目确定的赛博矿集区。赛博铜矿床的发现填补了西天山境内无大型斑岩-矽卡岩型铜矿床的空白,对西天山境内铜矿床的找矿勘查工作具有重要意义。本文在前人研究及大量野外地质调查和找矿勘查的基础上,结合岩石学、地球化学、年代学和成矿流体的研究,详细剖析了矿床的成岩成矿过程;通过找矿勘查研究,基本查明了矿床的下一步找矿方向,建立了矿床经验找矿模型。赛博铜矿床矿体的产出位置、矿化及蚀变分带受花岗闪长斑岩、花岗斑岩及断层构造的控制十分明显。花岗闪长斑岩和花岗斑岩的锆石U-Pb LA-ICP-MS年龄分别为386.2±0.69Ma和386.9±0.71Ma,石英硫化物成矿阶段矿体硫化物辉钼矿的Re-Os同位素年龄为379.2±7.7Ma,表明赛博铜矿床的成岩成矿作用与泥盆世海西早期岩浆活动有关。矿区主要存在两种蚀变分带:矽卡岩型蚀变和斑岩型蚀变。矽卡岩型蚀变发育在斑岩体内、外接触带及其附近构造破碎带中,岩体附近依次发育石榴子石矽卡岩、透辉石矽卡岩和硅灰石矽卡岩。斑岩型蚀变主要发育在斑岩体中,偶见于斑岩体外接触带迭加在矽卡岩型蚀变之上。斑岩型蚀变与斑岩型矿化相伴而生,矿化往往发育在斑岩体内及岩体内接触带上,以含矿石英细脉、石英方解石细脉、含绿泥石(透闪石)石英细脉等多种含矿脉体密集发育为特点。通过矿物学、成矿流体及氢、氧同位素研究,基本查明了赛博铜矿区不同成矿期流体来源及物理化学特征。岩浆晚期-热液早期的成矿流体主要为中高温(430℃545℃)、高盐度(平均13.4%)的岩浆水;早矽卡岩阶段成矿流体为中温(475℃510℃)、高盐度(平均16.94%),晚矽卡岩阶段成矿流体的温度(383℃485℃)和盐度(10.52%)略有下降,推断有少量地表水(海水、大气降水)加入。石英-硫化物阶段地表水(海水、大气降水)增多,成矿流体具有低温(195℃270℃)、低盐度(平均3.3%)的特征,推断其演变为岩浆水与地表水的混合热液。H-O-S特征表明成矿物质具有岩浆硫和沉积硫混合源特征,成矿早期热液以岩浆水为主,成矿晚期,热液演变为岩浆水与大气降水的混合热液。成矿斑岩体样品的铝饱和指数(ASI)为0.760.90,均小于1.1,为准铝质花岗岩,P2O5与SiO2的含量具有明显的负相关性,微量元素Th和Y含量较高,且与Rb呈正相关关系,微量元素Zr+Y+Nb+Ce的值为158.1ppm263.7ppm,明显低于A型花岗岩的下限值350ppm。通过岩相学研究,进一步发现斑岩体样品中明显缺少A型花岗岩的典型钠闪石类矿物(钠闪石和钠铁闪石等)和S型花岗岩中典型的镁铁质矿物(白云母和石榴石),同时花岗质侵入岩中出现了磁铁矿矿物,表明成矿斑岩体为I型花岗岩。研究发现,成矿斑岩体I型花岗岩地球化学、Hf同位素具有以下特征:SiO2和CaO含量较高,TFe2O3、MgO、TiO2、K2O和Mg#含量较低,同时Co、Cr、Ni等微量元素含量明显偏低;εHf(t)和176Hf/177Hf的值较高,εHf(t)介于-0.37和6.45之间,176Hf/177Hf均值为0.283,(Rb/Sr)N比值为0.0770.285,介于上地幔值(0.034)与地壳值(0.35)之间,Nb/Ta比值为9.5012.83,介于地幔值(17.5)与地壳值(8.3)之间,另外,样品具有相对富集大离子亲石元素(如K、Sr)和不相容元素(如Th、U),高场强元素(如Nb、Ta、P、Ti)相对亏损和明显的“TNT”负异常的特征。这表明该矿区I型花岗岩具有壳幔混源特点,源岩应来自亏损地幔的玄武质岩浆,并有新生壳源部分熔融物质的加入。Ⅰ型花岗岩的锆石U-Pb年龄为386.2±0.69Ma和386.9±0.71Ma,矿体硫化物辉钼矿的Re-Os同位素年龄为379.2±7.7Ma,表明其成岩成矿时代为泥盆世。中晚泥盆世-早石炭世时期,北天山洋持续向南部的伊犁板块下俯冲,使得洋壳在俯冲作用下发生部分熔融,并交代地幔楔物质,导致赛里木微陆块的基底陆壳活化,壳幔混源的深部含矿花岗质岩浆沿断裂上侵,与蓟县系库松木切克群灰岩发生交代作用并萃取围岩中的金属元素,在岩体顶部富集形成斑岩型铜矿体,同时在岩体与围岩接触带附近形成矽卡岩型铜矿体,从而富集形成了赛博斑岩-矽卡岩型铜矿床。矿区开展了找矿勘查工作,发现在岩体周围高磁异常区和极化率高于2.21%的重叠分布区域应考虑为矿致异常,是重要的找矿线索。依据矿床经验找矿模型,综合磁法、激电和EH4测量结果推断矿区北西部、东北部及ZK08周围深部有很大的找矿潜力,更大找矿突破令人期待。该论文有图74幅,表15个,参考文献240篇。
代俊峰[5](2019)在《新疆天山晚古生代岛弧环境矽卡岩型铅锌成矿作用》文中提出全球铅锌资源主要来自沉积岩容矿的SEDEX型、MVT型和砂岩型铅锌矿床;但天山地区却发现有许多大型-超大型的矽卡岩型铅锌矿床,显示出巨大的矽卡岩型铅锌成矿潜力,这是天山铅锌成矿的重要特色。这些矽卡岩型铅锌矿床形成于何种地质环境?矿化样式和成矿方式如何?都是颇受关注的科学问题。本文以详实的野外地质调查和室内显微岩相学研究为基础,选取新疆西天山阿尔恰勒和东天山阿奇山矿床为研究对象,开展天山晚古生代矽卡岩型铅锌成矿环境和成矿过程的研究,并建立新疆天山远矽卡岩型和近矽卡岩型两种不同的铅锌矿化模式。同最后,从时空分布、构造活动、容矿地层、岩浆活动和热液成矿等几个方面着手,揭示天山矽卡岩型铅锌矿床的成矿规律、成矿系统物质组成和成矿演化,旨在为天山矽卡岩型铅锌找矿提供科学依据。研究主要取得以下的成果和进展:(1)阿尔恰勒矿床成矿时代为340 Ma;稳定和放射性同位素组成指示成矿物质和流体主要为岩浆来源,部分来自围岩大哈拉军山组。成矿和区域岩浆活动的时空关系表明矿床形成于晚古生代岛弧环境,与南天山洋俯冲过程中在伊犁板块南缘引起的大规模中-酸性岩浆活动有关。阿尔恰勒矿床属于远矽卡岩矿床,是深部来源的岩浆热液沿地层层间薄弱带进行渗滤交代的结果。(2)阿奇山矿床的成矿时代为306 Ma;稳定和放射性同位素组成指示成矿物质和流体主要为岩浆来源,部分来自围岩雅满苏组。成矿与区域岩浆活动时空关系表明矿床形成于晚古生代南天山洋俯冲的岛弧环境。阿奇山矿床属于渗滤交代矽卡岩矿床,是岩浆流体与雅满苏组中的钙质砂岩、灰岩透镜体进行水岩反应的产物。(3)天山地区的矽卡岩型铅锌矿化主要发在在晚古生代,受大洋俯冲岛弧环境、钙碱性岩浆活动、古生代海相火山碎屑岩和碳酸盐岩沉积、有利含矿热液供给通道以及成矿后良好的保存条件等多种因素共同制约。(4)通过系统归纳成矿时代、构造环境、容矿地层、岩浆活动以及矿化蚀变等多个控矿要素,认为天山矽卡岩型铅锌矿床的找矿潜力巨大。北天山岛弧带、哈萨克斯坦-伊犁板块北缘和南缘、乌兹别克斯坦中天山南缘以及新疆东天山之中天山地块是矽卡岩型铅锌矿床有利的成矿远景区。
位鸥祥[6](2019)在《东天山-北山地区小狐狸山钼多金属矿床的成因研究》文中研究说明东天山-北山地区发育了白山、东戈壁、花黑滩、小狐狸山等多个三叠纪钼矿床,本文选取小狐狸山钼矿床作为研究对象,在详细地质特征和岩相学研究的基础上,通过进一步开展电子探针、岩石地球化学、锆石U-Pb测年、同位素地球化学以及流体包裹体等工作,从小狐狸山岩体的形成过程、岩浆-流体-成矿的成因联系等方面进行了系统研究,详细对比东天山-北山地区钼矿床成岩成矿背景,获得的主要认识如下:(1)小狐狸山矿区围岩除奥陶系咸水湖组安山岩(489±11Ma),另发现晚志留世安山玢岩(419±5.4Ma),为矿区首次报道志留纪火山活动。安山玢岩为准铝质、钙碱性岩石系列,源于壳幔混合源区,经历了强烈同化混染作用,形成于俯冲岛弧背景。(2)小狐狸山地区早古生代岩浆岩与南部的旱山微陆块、马鬃山岛弧带岩浆岩具有相似年代学、地球化学性质和形成背景,同属于西伯利亚板块与塔里木板块之间的多岛弧增生带。(3)小狐狸山成矿岩体钾长花岗斑岩中的锆石LA-ICP-MS U-Pb年龄198215Ma,对应晚三叠世,岩体显示高硅、高钾、弱过铝质,高钾钙碱性A1型花岗岩特征。母岩浆源于板内拉张背景下,地幔岩浆底侵导致的新生下地壳部分熔融。(4)小狐狸山矿床成矿流体分为三个阶段:钾硅酸盐化阶段(400250℃)→石英-硫化物阶段(300100℃)→石英碳酸盐化阶段(200100℃),主成矿温度在400150℃之间,压力小于400MPa,成矿深度为小于2.5km,形成的辉钼矿为3R型。矿床为典型斑岩型钼矿床,辉钼矿沉淀主要由于温度骤降引起的。(5)东天山-北山地区三叠纪钼矿床主要形成于板内伸展背景下,含钼母岩浆起源于新生下地壳物质的部分熔融。(6)天山-北山地区含钼矿床以斑岩型矿床为主,时空分布整体具有“西老东新”的特征,就成矿规模来看以新疆东天山-甘肃北山接触带位置成矿潜力最为巨大。综上,东天山-北山地区具有形成三叠纪钼矿床的巨大潜力。本文对小狐狸山矿床的研究成果为东天山-北山地区三叠纪钼矿床的理论研究和生产勘探提供了可靠依据。
罗杨[7](2019)在《新疆铁热克特乌增铁矿床地质特征及成因研究》文中研究表明新疆西天山是我国铁矿分布相对集中的区域之一。塔城大队在西天山铁热克特乌增铁矿区发现的铁热克特乌增铁矿,矿产储量估算196万吨,虽然该铁矿规模较小,但是品位高,埋藏浅,矿化特征较独特。但因自然条件险恶,地理交通情况较差,该地区的铁矿地质研究程度低,其铁矿研究大多集中在矿产储量计算,而其铁矿成因、成矿环境、成矿条件、成矿模式等问题尚未定论。因此加大该铁矿床的基础地质和地球化学方面研究力度,可进一步认识西天山地区大地构造演化和铁矿成矿特征,同时有利于深化该铁矿的成矿机制以及成矿理论。据相关地质研究资料显示,前人所采集的样品,来自单个钻孔,仅能反应元素地球化学纵向上的特征,而对元素地球化学横向变化规律缺乏系统性研究,严重制约了对该铁矿成因的认识,特别是目前研究矿床成因的重要手段—Fe同位素地球化学特征也少有涉及。本次系统地对岩石地球化学横向特征进行探讨,结合Fe同位素特征,从元素地球化学角度入手探讨其成因。本文在调查铁热克特乌增铁矿区区域地质背景的基础上,查明矿区地质特征以及矿床地质特征,分析矿床的主量元素、微量元素、稀土元素和铁同位素地球化学特征,探讨了成矿物质来源、成矿环境、成矿机制和成矿模式,得出结论如下:(1)铁热克特乌增铁矿主量元素地球化学特征表明,随着矿化强度的增高,Si O2的含量也有所增大,Fe2O3开始富集,但镁,钙含量不高。(2)微量元素、稀土元素地球化学特征以及p H、Eh值表明,铁热克特乌增铁矿成矿经过了酸性和碱性,氧化和还原两个阶段。(3)Fe同位素地球化学特征,指示铁热克特乌增铁矿的主要四个含矿层,铁的来源是岩浆热液和沉积物。(4)铁热克特乌增铁矿的成因较为复杂,成矿物质来源具有多源性。早期原始铁质主要来源于岩浆,贯入地层,并由海水入侵,萃取出的成矿物质在滨海处沉积,海水褪去后,铁矿物质经流水搬运、改造、富集等影响沉积成矿。此次研究认为铁热克特乌增铁矿的成因属于海相火山—沉积型铁矿。
邢浩[8](2019)在《新疆伊犁地块北缘晚古生代火山岩及其成矿构造背景意义》文中指出中亚造山带是研究造山和地壳生长过程的天然实验室。伊犁地块位于中亚造山带的西南部,其晚古生代强烈的岩浆活动,吸引了国内外众多学者聚焦于此。但到目前为止,汇聚与伸展两个截然不同构造背景认识依然存在,火山岩浆作用在伊犁地块北缘(博罗科努山)与内部(阿吾拉勒山、伊什基里克山)有何不同和联系还不清楚。可见厘清该时期岩浆活动规律,探讨壳幔作用过程,对晚古生代地壳生长及成岩成矿均具有重要的地质意义。本论文以详细的野外宏观调查为基础,选择伊犁北缘博罗科努山大哈拉军山组为重点,总结地块内部及边缘同组岩石年代学、元素同位素地球化学,探索伊犁北缘晚古生代壳幔作用机制,明确岩浆活动内在规律。本次研究取得以下主要成果和认识:1.测得博罗科努山尼勒克县北、琼阿希河谷等地大哈拉军山组火山岩锆石U-Pb年龄分别为375Ma、350Ma,结合前人针对本区大哈拉军山组火山岩测得的年龄数据,大量统计分析表明,伊犁北缘该时期岩浆活动集中于350380Ma,东西空间上并不存在明显的时代变化规律,博罗科努山大哈拉军山组是典型的陆缘弧产物。2.伊什基里克山与博罗科努山岩浆作用近乎同期,只是开始时间较晚(330368Ma);而阿吾拉勒山岩浆活动开始时间与博罗科努山岩浆活动结束时间接近(350 Ma),持续至晚石炭世。3.伊犁地块北缘晚古生代火山岩原始基性母岩浆具有高铝的性质,中酸性火山岩一部分形成于基性岩浆的结晶分异,一部分形成于新生地壳的重熔,一部分形成于两者的混合作用。4.统计和对比伊犁地块大哈拉军山组火山岩同位素数据表明,洋陆俯冲的挤压背景下,博罗科努山火山岩具有较宽的Nd同位素变化范围(?Nd(t)=-4.79+4.10),而阿吾拉勒山火山岩具有较集中的幔源Nd同位素特征(?Nd(t)=-3.51+7.34)。前者可能与泥盆-石炭纪由挤压向拉张应力转换过渡有关,而后者可能与二叠纪大洋板片回撤/海沟后退有关。5.MELTS模拟结晶分异过程表明原始岩浆分异演化过程具有含水、低压等特点,分异过程主要发生于浅部地壳;EC-AFC迭代计算指示早期火山岩混入下部地壳成分居多,而晚期火山岩中上部地壳成分较多;热力学计算验证了下部地壳重熔的合理性。
周煜杰[9](2018)在《伊宁地块地质背景及成矿规律研究》文中研究说明伊宁地块是中亚造山带的重要组成部分,其构造特殊复杂,地理位置特殊。近年来由于伊宁地块在找矿方面的重大突破,对该地区的研究也越来越深入,但由于其构造较为复杂,地质演化和成矿规律产生一些较大的争议。在经过最新资料总结及野外工作后,从以下方面做了系统研究。通过对西天山地区泥盆系、石炭系、二叠系的岩石地层单位清理,对中酸性侵入岩分布、线性构造分布、全区地球物理及地球化学背景等资料的调查与综合集成,为寻找伊宁地块含矿层位、优选有利成矿岩体、总结地球物理与地球化学异常特征与成矿规律、优选新的找矿调查区等项工作提供详实的基础资料。本次研究系统理清晚古生界,调查岩石组合、形成环境,研究和查找含矿层位。调查研究区内中酸性侵入岩的分布、岩石组合、演化序列、蚀变与矿化类型,优选有利成矿岩体。研究与成矿有关的线性构造的分布,构造属性,形成和演化,分析其对成矿作用的控制。研究全区的重、磁场特征,分析区域性主干断裂及其组合特征,确定火山机构及可能存在的隐伏岩体,总结已知矿区的地球物理异常特征。总结全区Au、Fe、Cu及其相关元素的勘查地球化学资料,研究已知矿区的地球化学异常分布特征,筛选出有找矿潜力的地球化学异常。解剖尼新塔格、查岗诺尔、松湖等铁矿床的成矿地质条件,总结区域中铁矿的成矿规律,试建铁矿床找矿模型,总结典型矿床的成矿规律,为以后找矿提供新的理论基础。在对伊宁地块重点成矿区域调查与资料整合后,系统整理了伊宁地块的重点含矿层位,圈定成矿远景区3处,研究中绘制了研究区最新的1:25万地质图、1:50万航磁异常、重力异常图。
高荣臻[10](2018)在《新疆西南天山中—新生界砂岩容矿铅锌成矿作用 ——以乌拉根铅锌矿床为例》文中研究说明新疆西南天山已发现有众多中-新生界砂岩容矿铅锌矿床(点),常成群成带产出,显示出了良好的成矿条件,重大找矿突破令人期待。位于喀什凹陷北部的乌拉根铅锌矿床,是该地区矿床规模唯一可达(超)大型、矿化特征最典型、成矿过程完整且保存良好的砂岩容矿铅锌矿床,为揭示西南天山中-新生界砂岩容矿铅锌成矿作用的理想对象。本文在详细的野外地质调查和室内岩/矿相学观测的基础上,从成矿年龄、成矿物质来源、成矿流体性质、矿质迁移形式及沉淀机制等方面开展乌拉根铅锌成矿作用研究,建立矿床成矿模式,并总结该类型矿床区域成矿规律,揭示其关键控矿要素,明确今后找矿方向。取得主要认识如下:(1)由于受到晚侏罗-早白垩世拉萨地块与羌塘地块碰撞远程效应和中亚地区干旱事件的共同影响,下白垩统克孜勒苏群以西南天山高铅锌背景的元古界变质基底和古生界被动陆缘沉积物为源区,沉积了一套冲积扇-辨状河-辨状河三角洲相红色碎屑岩建造,形成了区域重要的铅锌容矿层位。(2)乌拉根铅锌矿床可能经历了晚始新世(4535Ma)、渐新世末-中新世(30-18Ma)和晚中新世(6.310.7Ma)三期成矿,这与区域油气充注、西天山构造隆升峰期相吻合,可能分别与印度板块-Kohistan-Ladakh弧联合板块与欧亚大陆碰撞、主帕米尔断裂(MPT)及帕米尔前缘逆冲断裂(PFT)远程效应有关。(3)闪锌矿及与其共生方解石流体包裹体测温结果显示成矿流体具有低温(集中于100-150℃)、中低盐度(集中于4-14%NaCleq)的特征;方解石碳氧同位素表明成矿流体可能与有机质脱羧基作用有关,暗示其可能有油气或油田卤水的加入;还原硫可能源于海相硫酸盐的热化学还原(TSR)和细菌硫酸盐还原(BSR)两种方式,且两者贡献率相当。(4)系统的Pb同位素和REE分析表明成矿金属可能主要源于克孜勒苏群第五岩性段红色碎屑岩;红化过程中铁氧化物对金属离子的选择性吸附可能是导致铅锌与铜银分离的重要机制,漂白过程中伴有大量铁铅锌金属元素迁出。(5)乌拉根铅锌成矿可能是混有油气或油田卤水的还原性流体,自北向南沿克孜勒苏群第五岩性段红色砂岩/砾岩运移,发生“漂白”萃取其中成矿金属元素,在有利的圈闭部位与上覆阿尔塔什组石膏或克孜勒苏群第五岩性段中石膏胶结砂岩/砾岩发生硫酸盐还原反应而导致金属硫化物沉淀。(6)综上分析,西南天山中-新生界砂岩容矿铅锌成矿背景与其南部特提斯域多陆块单向与欧亚大陆碰撞远程效应有关,成矿作用可能受盆地结构、油气运移与红层“漂白”、古隆起、炎热干旱的古气候等多种因素共同控制。
二、西天山北部地区成矿规律初探(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、西天山北部地区成矿规律初探(论文提纲范文)
(1)西昆仑与西南天山结合部晚古生代沉积型锰矿床成矿规律与成矿预测(论文提纲范文)
作者简历 |
摘要 |
abstract |
第一章 绪论 |
1.1 选题目的及意义 |
1.1.1 选题来源 |
1.1.2 研究意义 |
1.2 国内外锰矿研究现状 |
1.2.1 全球锰矿资源概况 |
1.2.2 锰矿床成因类型 |
1.2.3 沉积型锰矿床成因研究现状 |
1.2.4 我国锰矿研究与勘查历史 |
1.2.5 西昆仑与西南天山结合部锰矿研究现状 |
1.3 研究内容与研究方法 |
1.3.1 研究内容及拟解决的科学问题 |
1.3.2 研究方法 |
1.4 完成的工作量 |
第二章 区域地质背景 |
2.1 大地构造位置 |
2.2 区域地质概况 |
2.2.1 区域地层 |
2.2.2 区域构造 |
2.2.3 区域岩浆岩 |
2.3 区域地球物理特征 |
2.3.1 区域重力特征 |
2.3.2 区域航磁特征 |
2.4 区域地球化学特征 |
2.5 区域矿产 |
第三章 典型锰矿床地质特征 |
3.1 西昆仑玛尔坎苏锰矿带 |
3.1.1 奥尔托喀讷什锰矿床 |
3.1.2 穆呼—玛尔坎土锰矿床 |
3.2 西南天山吉根锰矿远景区 |
本章小结 |
第四章 矿床地球化学特征 |
4.1 玛尔坎苏锰矿带 |
4.1.1 主量元素特征 |
4.1.2 微量元素、稀土元素特征 |
4.1.3 碳和氧同位素特征 |
4.2 吉根锰矿远景区 |
4.2.1 主量元素 |
4.2.2 微量元素和稀土元素特征 |
本章小结 |
第五章 成锰期的沉积相与沉积环境 |
5.1 石炭系沉积相与沉积环境 |
5.1.1 上石炭统喀拉阿特河组(C2k) |
5.1.2 下石炭统乌鲁阿特组(C1w) |
5.2 下泥盆统沉积相与沉积环境 |
5.2.1 沉积相 |
5.2.2 沉积环境 |
本章小结 |
第六章 成矿作用与矿床成因 |
6.1 锰的物质来源 |
6.2 锰沉积成矿的物理化学条件 |
6.3 锰的成矿作用 |
6.3.1 西昆仑玛尔坎苏锰矿带 |
6.3.2 西南天山吉根地区锰的成矿作用 |
6.4 西昆仑与西南天山结合部锰矿床富锰矿石形成机制 |
6.4.1 锰质供给具有多来源特点 |
6.4.2 Mn与Fe分离与富集 |
6.4.3 含炭质含锰岩系具热水沉积特征 |
6.4.4 沉积成岩—成矿过程有利的物理化学条件 |
6.4.5 小结 |
第七章 成矿规律与成矿预测 |
7.1 控矿地质因素分析 |
7.2 锰矿床保存的构造因素——构造改造 |
7.3 锰矿床成矿规律 |
7.4 玛尔坎苏锰矿带与吉根锰矿远景区对比 |
7.5 物探、化探和遥感找矿信息 |
7.5.1 玛尔坎苏锰矿带喀拉苏勘查区 |
7.5.2 吉根远景区 |
7.6 成矿预测 |
7.6.1 预测准则 |
7.6.2 主要找矿标志 |
7.6.3 锰矿床找矿靶区预测 |
7.7 沉积型锰矿床有效的找矿方法 |
第八章 结论 |
8.1 主要认识和结论 |
8.2 存在的问题与建议 |
致谢 |
参考文献 |
(2)东天山阿齐山—雅满苏成矿带海相火山岩型铁矿成矿作用与成矿模式研究(论文提纲范文)
作者简历 |
摘要 |
abstract |
第一章 引言 |
1.1 选题背景与研究意义 |
1.2 研究现状与存在问题 |
1.2.1 国外火山岩型铁矿研究现状 |
1.2.2 国内火山岩型铁矿研究现状 |
1.2.3 东天山海相火山岩型铁矿研究现状 |
1.2.4 存在的科学问题 |
1.3 研究内容、技术路线以及完成工作量 |
1.3.1 研究内容 |
1.3.2 技术路线 |
1.3.3 完成工作量 |
1.3.4 论文创新点 |
第二章 区域地质背景 |
2.1 大地构造背景 |
2.2 区域地层 |
2.3 区域构造 |
2.4 区域岩浆岩 |
2.4.1 火山岩特征 |
2.4.2 侵入岩特征 |
2.5 区域矿产 |
第三章 研究样品与实验分析方法 |
3.1 样品采集和处理 |
3.2 全岩主量元素和微量元素实验分析 |
3.3 全岩Sr-Nd同位素分析 |
3.4 矿物电子探针实验分析 |
3.5 矿物LA-ICP-MS原位分析 |
3.6 稳定同位素分析 |
3.7 矿物能谱分析 |
第四章 矿浆型铁矿化-黑尖山铁矿 |
4.1 矿床地质特征 |
4.2 矿区富铁团块的特征 |
4.2.1 岩石学和矿物学特征 |
4.2.2 富铁基质地球化学特征 |
4.2.3 围岩地球化学特征 |
4.2.4 富铁基质Fe,O同位素特征 |
4.3 富铁团块的成因及形成机理探究 |
4.3.1 与围岩的时间关系 |
4.3.2 物质来源 |
4.3.3 成因及形成机理 |
4.3.4 与铁成矿的关系 |
4.3.5 东天山海相火山岩型铁矿富铁团块特征 |
第五章 岩浆热液交代-充填型铁矿化——雅满苏铁矿 |
5.1 矿床地质特征 |
5.2 含矿地层的岩石学和矿物学特征 |
5.3 含矿玄武岩地球化学特征 |
5.3.1 全岩成分特征 |
5.3.2 全岩Sr-Nd同位素特征 |
5.4 玄武岩源区特征 |
5.5 磁铁矿矿石特征 |
5.6 磁铁矿地球化学特征 |
5.6.1 磁铁矿成分特征 |
5.6.2 磁铁矿Fe,O同位素特征 |
5.7 磁铁矿成因 |
5.8 成矿过程探讨 |
第六章 热液-沉积型铁矿化——赤龙峰铁矿 |
6.1 矿床地质特征 |
6.2 矿石矿物学特征 |
6.3 赤铁矿地球化学特征 |
6.3.1 赤铁矿成分特征 |
6.3.2 赤铁矿Fe,O同位素特征 |
6.4 铁矿石中重晶石S同位素特征 |
6.5 矿床铁质来源 |
6.6 矿床成因 |
第七章 不同类型铁矿床的成因联系及成矿模式 |
7.1 矿浆成矿机理 |
7.2 岩浆热液交代-充填成矿机理 |
7.3 热液-沉积成矿机理 |
7.4 东天山海相火山岩型铁矿成矿模型 |
第八章 我国火山岩型铁矿对比研究 |
8.1 与长江中下游宁芜-庐枞地区陆相火山岩型铁矿对比研究 |
8.2 与西天山阿吾拉勒地区海相火山岩型铁矿对比研究 |
第九章 主要结论及研究展望 |
致谢 |
参考文献 |
(3)西天山赛里木地区元古宙铅锌成矿作用研究(论文提纲范文)
中文摘要 |
Abstract |
第1章 引言 |
1.1 选题背景及研究意义 |
1.1.1 我国铅锌资源形势及发展战略 |
1.1.2 赛里木微地块喷流沉积型铅锌矿床研究意义 |
1.2 研究现状与存在问题 |
1.2.1 喷流沉积型铅锌矿床研究进展及存在问题 |
1.2.2 赛里木微地块中的铅锌矿床研究进展及存在问题 |
1.3 研究内容与研究思路 |
1.3.1 研究内容 |
1.3.2 研究思路 |
1.4 完成工作量 |
1.5 主要成果和创新点 |
第2章 区域地质背景 |
2.1 区域地层 |
2.2 区域构造 |
2.2.1 断裂构造 |
2.2.2 变形构造 |
2.3 区域岩浆活动 |
2.4 区域矿产 |
2.5 区域构造演化 |
第3章 托克赛铅锌矿床 |
3.1 矿床地质特征 |
3.1.1 矿区地质 |
3.1.2 矿体和矿石 |
3.2 硅质岩的成因 |
3.2.1 硅质岩的岩相学特征 |
3.2.2 硅质岩的地球化学特征 |
3.3 成矿环境 |
3.4 成矿物质来源 |
3.4.1 还原硫来源 |
3.4.2 成矿金属来源 |
3.5 托克赛铅锌成矿过程 |
第4章 哈尔达坂铅锌矿床 |
4.1 矿床地质特征 |
4.1.1 矿区地质 |
4.1.2 矿体和矿石 |
4.2 成矿流体性质和来源 |
4.2.1 流体包裹体特征 |
4.2.2 C-O同位素特征 |
4.3 成矿物质来源 |
4.3.1 还原硫来源 |
4.3.2 成矿金属来源 |
4.4 哈尔达坂铅锌成矿过程 |
第5章 四台-海泉铅锌矿床 |
5.1 矿床地质特征 |
5.1.1 矿区地质特征 |
5.1.2 矿体和矿石 |
5.2 四台-海泉铅锌成矿作用 |
第6章 赛里木地块铅锌成矿规律 |
6.1 喷流沉积型铅锌矿床的时空分布 |
6.2 喷流沉积型铅锌成矿地质特征 |
6.2.1 赋矿地层特征 |
6.2.2 控矿构造与铅锌成矿的关系 |
6.2.3 矿石矿物组成和组构特征 |
6.2.4 成矿物质来源 |
6.3 关键控矿因素和区域成矿模型 |
6.3.1 大陆边缘裂陷盆地沉积建造 |
6.3.2 流体的深部对流循环 |
6.3.3 同沉积断裂活动 |
6.3.4 区域成矿模型 |
6.4 找矿方向与找矿标志 |
6.4.1 找矿方向 |
6.4.2 找矿标志 |
第7章 结论及研究展望 |
致谢 |
参考文献 |
附录 |
附实验方法 |
个人简历及在校期间取得的成果 |
(4)新疆赛博铜矿床成矿作用及找矿勘查研究(论文提纲范文)
致谢 |
摘要 |
abstract |
1 绪论 |
1.1 选题依据及研究意义 |
1.2 研究现状 |
1.3 研究内容及研究方法 |
1.4 完成的主要工作量 |
2 赛博铜矿床地质特征 |
2.1 区域成矿背景 |
2.2 矿区地质特征 |
2.3 矿体特征及矿化类型 |
2.4 矿石特征 |
2.5 围岩蚀变特征 |
2.6 小结 |
3 赛博铜矿床成矿岩体演化特征 |
3.1 成矿岩体岩相学特征 |
3.2 成矿岩体岩石化学特征 |
3.3 成矿岩体岩浆岩成因 |
3.4 成矿岩体年代学及意义 |
3.5 小结 |
4 赛博铜矿床成因分析 |
4.1 成矿流体特征 |
4.2 成矿流体来源 |
4.3 成矿物质来源 |
4.4 成矿时代 |
4.5 小结 |
5 赛博铜矿床与赛里木地块成矿环境 |
5.1 地层含矿性 |
5.2 构造控矿性 |
5.3 岩浆岩与成矿 |
5.4 区域地球物理、地球化学与成矿 |
5.5 构造演化与成矿环境 |
5.6 成矿机制 |
5.7 小结 |
6 赛博铜矿床找矿勘查模式及工程示范 |
6.1 矿区岩(矿)石物性特征 |
6.2 找矿标志 |
6.3 综合物化探找矿勘查 |
6.4 钻探验证结果 |
6.5 综合勘查模式研究 |
6.6 找矿靶区预测 |
6.7 小结 |
7 结论 |
7.1 结论 |
7.2 存在的问题 |
参考文献 |
作者简历 |
学位论文数据集 |
(5)新疆天山晚古生代岛弧环境矽卡岩型铅锌成矿作用(论文提纲范文)
中文摘要 |
abstract |
第一章 引言 |
1.1 选题背景及研究意义 |
1.1.1 铅锌资源形势及发展战略 |
1.1.2 天山地区矽卡岩型铅锌矿床研究意义 |
1.2 研究现状及存在问题 |
1.2.1 矽卡岩矿床研究现状 |
1.2.2 西天山阿尔恰勒矿床研究现状和存在问题 |
1.2.3 东天山阿奇山矿床研究现状和存在问题 |
1.3 研究内容与研究思路 |
1.3.1 研究内容 |
1.3.2 研究思路 |
1.4 拟解决的科学问题 |
1.5 主要工作量 |
1.6 论文创新点及特色 |
第二章 天山区域构造与铅锌矿产 |
2.1 基本构造单元 |
2.2 区域构造演化 |
2.2.1 前寒武纪古陆形成 |
2.2.2 古生代洋-陆俯冲增生 |
2.2.3 晚古生代陆-陆碰撞造山 |
2.2.4 中-新生代陆内成盆 |
2.3 重要成矿环境与铅锌矿床类型 |
第三章 西天山阿尔恰勒矿床 |
3.1 乌孙山成矿带构造背景 |
3.2 阿尔恰勒矿床地质特征 |
3.2.1 地层 |
3.2.2 岩浆岩 |
3.2.3 构造 |
3.2.4 矿体特征 |
3.2.5 热液蚀变和矿化特征 |
3.2.6 矿物共生关系 |
3.3 成岩成矿年代学和矿床地球化学 |
3.3.1 闪锌矿Rb-Sr测年 |
3.3.2 阳起石Sm-Nd测年 |
3.3.3 辉长-闪长岩锆石U-Pb测年 |
3.3.4 辉长-闪长岩主微量元素组成 |
3.4 同位素研究 |
3.4.1 C-O同位素 |
3.4.2 H-O同位素 |
3.4.3 S同位素 |
3.4.4 Pb同位素 |
3.5 阿尔恰勒矿床成矿作用过程 |
3.5.1 远矽卡岩矿床 |
3.5.2 成矿时代 |
3.5.3 成矿物质来源 |
3.5.4 矿床成因 |
3.5.5 对区域找矿勘查的启示 |
第四章 东天山阿奇山矿床 |
4.1 区域地质背景 |
4.2 矿床地质特征 |
4.2.1 地层 |
4.2.2 岩浆岩 |
4.2.3 构造 |
4.2.4 矿体特征 |
4.2.5 热液蚀变和矿化特征 |
4.2.6 矿物共生关系 |
4.3 成岩成矿年代学研究及矿床地球化学 |
4.3.1 黄铁矿Re-Os测年 |
4.3.2 花岗斑岩锆石U-Pb测年及Lu-Hf同位素组成 |
4.3.3 花岗闪长岩主微量元素组成 |
4.4 成矿物质来源 |
4.4.1 硫同位素 |
4.4.2 碳、氧同位素 |
4.4.3 铅同位素 |
4.5 阿奇山矿床成矿作用过程 |
4.5.1 接触交代矽卡岩矿床 |
4.5.2 成岩成矿时代 |
4.5.3 成矿物质来源 |
4.5.4 矿床成因 |
4.5.5 对区域找矿勘查的启示 |
第五章 天山晚古生代矽卡岩型铅锌矿床成矿规律 |
5.1 矽卡岩型铅锌矿床时空分布规律 |
5.2 天山矽卡岩型铅锌矿床的关键控矿要素 |
5.2.1 晚古生代岛弧环境 |
5.2.2 地层 |
5.2.3 岩浆岩 |
5.2.4 构造 |
5.2.5 热液蚀变 |
5.2.6 金属矿物组合 |
5.2.7 成矿物质和成矿流体来源 |
5.3 天山矽卡岩型铅锌矿床找矿潜力 |
第六章 结论 |
致谢 |
参考文献 |
附录 |
附实验方法 |
个人简历及在校期间取得的成果 |
(6)东天山-北山地区小狐狸山钼多金属矿床的成因研究(论文提纲范文)
致谢 |
摘要 |
abstract |
第一章 引言 |
1.1 课题的来源、目的及意义 |
1.1.1 课题来源 |
1.1.2 研究目的 |
1.1.3 研究意义 |
1.2 斑岩型钼矿床的研究现状 |
1.2.1 矿床分类 |
1.2.2 成矿岩浆岩 |
1.2.3 构造背景 |
1.2.4 热液蚀变与矿化特征 |
1.2.5 钼的成矿机制 |
1.3 我国钼矿床的时空分布 |
1.4 东天山-北山研究现状 |
1.4.1 大地构造背景 |
1.4.2 成岩成矿作用 |
1.4.3 小狐狸山钼矿床研究现状 |
1.5 拟解决的主要问题 |
1.6 论文完成的实物工作量 |
1.7 论文主要研究进展 |
第二章 地质特征 |
2.1 区域地质背景 |
2.1.1 地层 |
2.2.2 构造 |
2.2.3 岩浆岩 |
2.2.4 区域矿产 |
2.2 小狐狸山钼矿床 |
2.2.1 矿区地质特征 |
2.2.2 矿床地质特征 |
第三章 成矿岩浆岩 |
3.1 地质特征 |
3.2 火山岩 |
3.2.1 岩相学特征 |
3.2.2 分析测试 |
3.2.3 岩石成因与成岩背景 |
3.3 侵入岩 |
3.3.1 岩相学特征 |
3.3.2 分析测试 |
3.3.3 岩石成因与成岩背景 |
第四章 矿床成因 |
4.1 矿物生成顺序及成矿期次 |
4.2 辉钼矿矿物学研究 |
4.2.1 SEM分析 |
4.2.2 辉钼矿粉晶衍射 |
4.3 成矿流体 |
4.4 成矿模式 |
第五章 东天山-北山地区三叠纪钼-多金属矿床对比 |
5.1 东天山-北山三叠纪钼矿床 |
5.1.1 东戈壁钼矿床 |
5.1.2 白山钼矿床 |
5.1.3 花黑滩钼矿床 |
5.1.4 东天山-北山三叠纪钼矿床对比 |
5.2 天山-北山含钼-多金属矿床 |
第六章 结论 |
参考文献 |
攻读硕士学位期间的学术活动及成果情况 |
(7)新疆铁热克特乌增铁矿床地质特征及成因研究(论文提纲范文)
摘要 |
Abstract |
第1章 前言 |
1.1 选题依据及研究意义 |
1.2 研究现状 |
1.2.1 我国铁矿资源现状 |
1.2.2 我国铁矿主要类型 |
1.2.3 铁矿床研究方法研究现状 |
1.2.4 铁热克特乌增矿区研究现状 |
1.2.5 铁热克特乌增铁矿床研究现状 |
1.3 存在问题 |
1.4 研究内容与研究方法 |
1.4.1 研究内容 |
1.4.2 研究思路和技术路线 |
1.4.3 完成工作量 |
第2章 区域地质特征 |
2.1 铁热克特乌增区域地理位置及交通 |
2.2 区域地层 |
2.3 大地构造 |
2.4 构造 |
2.5 岩浆岩 |
2.5.1 火山岩特征 |
2.5.2 侵入岩特征 |
2.6 小结 |
第3章 矿床地质特征 |
3.1 矿床地层 |
3.2 矿床构造 |
3.3 岩浆岩 |
3.4 矿体特征 |
3.5 矿石特征 |
3.6 铁热克特乌增矿床与其他沉积型铁矿床特征对比 |
第4章 矿床地球化学特征 |
4.1 主量元素地球化学特征 |
4.2 微量元素地球化学特征 |
4.3 稀土元素地球化学特征 |
4.4 Fe同位素地球化学特征 |
第5章 矿床成因探讨 |
5.1 成矿物质来源 |
5.1.1 稀土元素与成矿物质来源 |
5.1.2 Fe同位素与成矿物质来源 |
5.2 成矿环境 |
5.2.1 pH和Eh的测定 |
5.2.2 Eh |
5.2.3 pH |
5.2.4 成矿构造环境 |
5.3 矿床成因探讨 |
5.4 成矿模式 |
结论 |
主要认识与成果 |
存在问题及讨论 |
致谢 |
参考文献 |
攻读学位期间取的学术成果 |
(8)新疆伊犁地块北缘晚古生代火山岩及其成矿构造背景意义(论文提纲范文)
中文摘要 |
abstract |
第1章 引言 |
1.1 安山质岩浆形成过程研究现状 |
1.2 选题依据及意义 |
1.3 伊犁地块晚古生代火山岩研究现状及存在问题 |
1.4 研究对象 |
1.5 研究思路 |
1.6 论文工作量 |
1.7 主要创新性成果和认识 |
第2章 晚古生代区域地质背景 |
2.1 基本构造格架 |
2.2 构造演化 |
2.2.1 哈萨克斯坦山湾构造的演化史 |
2.2.1.1 元古代古陆 |
2.2.1.2 古生代洋陆转换 |
2.2.1.3 中新生代陆内成盆 |
2.3 博罗科努山区域地质 |
2.3.1 地层 |
2.3.2 岩浆岩 |
2.3.3 断裂 |
第3章 博罗科努山大哈拉军山组岩石特征 |
3.1 琼阿希、胡吉尔台、尼勒克北实测剖面 |
3.1.1 琼阿希河剖面 |
3.1.2 琼阿希下石炭统大哈拉军山组(C_1d) |
3.1.3 尼勒克水泥厂北剖面 |
3.1.4 水泥厂下石炭统大哈拉军山组(C_1d) |
3.1.5 尼勒克县胡吉尔台北剖面 |
3.1.6 胡吉尔台大哈拉军山组(C_1d) |
3.2 成岩年代学和地球化学 |
3.2.1 火山岩年代学 |
3.2.2 火山岩稀土和微量地球化学 |
3.3 大哈拉军山组岩石组合 |
3.4 博罗科努山大哈拉军山组岩浆作用时限 |
3.4.1 吐拉苏盆地 |
3.4.2 也里莫墩 |
3.5 火山岩岩石地球化学 |
第4章 博罗科努山安山质岩浆成岩过程 |
4.1 基性岩浆的分离结晶 |
4.1.1 博罗科努山基性岩组成 |
4.1.2 结晶分异的母源成分 |
4.1.3 基性岩高铝含量的控制因素 |
4.2 MELTS模拟结晶分异主量元素结果 |
4.3 结晶分异模拟过程的微量元素计算 |
4.4 基性岩浆的同化混染-Assimilation |
4.4.1 博罗科努山基性岩浆的EC-AFC过程 |
4.5 壳内重熔 |
4.5.1 岩浆房的壳内深度 |
4.5.2 地壳深熔过程实例 |
4.5.3 博罗科努山大哈拉军山组部分中酸性岩地壳重熔的迹象 |
4.5.4 地壳重熔的微量元素验证 |
4.6 下部地壳重熔的热力学属性 |
4.7 岩浆混合-Mixing and Mingling |
4.7.1 岩浆混合与博罗科努山高Mg安山岩 |
4.8 建立伊犁地块北缘安山质岩浆成因模型 |
4.9 成矿构造背景意义 |
第5章 结论及研究展望 |
致谢 |
参考文献 |
附录 |
附实验方法 |
附文内理论应用及简述 |
结晶分异过程简介 |
结晶过程的应用 |
同化混染过程简介 |
AFC过程简述 |
EC-AFC(Energy Constrained-Assimilation Fractional Crystallizaition) |
岩浆混合过程简介 |
岩浆混合作用发生的一般情形 |
岩浆混合作用的应用 |
地壳深熔-Crustal Anatexis |
MELTS介绍 |
MELTs模拟过程参数设置 |
附图 |
附表 |
个人简历及在校期间取得的成果 |
(9)伊宁地块地质背景及成矿规律研究(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 论文选题依据 |
1.2 研究现状 |
1.3 研究内容 |
1.4 主要工作量 |
1.5 研究思路与方法 |
第二章 伊宁地块地质背景 |
2.1 伊宁地块交通位置及自然地理 |
2.2 伊宁地块大地构造背景 |
2.2.1 准噶尔板块 |
2.2.2 北天山构造带 |
2.2.3 中天山北缘缝合带 |
2.2.4 伊宁地块 |
2.2.5 中天山板块南缘缝合带 |
2.2.6 南天山被动陆缘 |
2.2.7 塔里木板块 |
2.3 伊宁地块地层划分 |
2.4 伊宁地块侵入岩 |
2.5 伊宁地块断裂构造 |
2.6 伊宁地块火山岩 |
第三章 区域地球物理特征 |
3.1 区域重力异常特征 |
3.2 区域航磁异常特征 |
3.3 地球物理异常与成矿的关系 |
3.4 区域重力、航磁与石炭系地层关系 |
第四章 区域地球化学异常特征 |
4.1 区域地球化学异常背景特征 |
4.2 区域地球化学异常特征及成矿关系 |
4.2.1 依连哈比尔尕Au、Cu、Ni异常带 |
4.2.2 博罗霍洛Au、Pb、Zn、Cu、Mo异常带 |
4.2.3 阿吾拉勒-伊什基里克Cu、Pb、Zn、Au异常带 |
4.2.4 那拉提Cu、Ni、Au、W、Sn异常带 |
第五章 伊宁地块成矿规律研究 |
5.1 区域成矿规律 |
5.1.1 区域成矿带划分 |
5.1.2 矿产在空间上的分布 |
5.1.3 矿产在时间上的分布 |
5.1.4 主要控矿因素 |
5.1.5 典型铁矿床成因模式 |
5.2 伊宁地块金元素成矿规律 |
5.3 伊宁地块铜元素成矿规律 |
5.4 伊宁地块铁元素成矿规律 |
5.5 成矿远景区划分及特征 |
5.5.1 成矿远景区圈定依据 |
5.5.2 成矿远景区特征 |
第六章 结论及存在问题 |
6.1 结论 |
6.2 存在问题 |
参考文献 |
攻读学位期间取得的研究成果 |
致谢 |
(10)新疆西南天山中—新生界砂岩容矿铅锌成矿作用 ——以乌拉根铅锌矿床为例(论文提纲范文)
中文摘要 |
abstract |
第1章 引言 |
1.1 选题背景及研究意义 |
1.1.1 铅锌矿产资源形势及发展战略 |
1.1.2 西南天山砂岩容矿铅锌矿床研究意义 |
1.2 研究现状及存在问题 |
1.2.1 砂岩型铅锌矿床研究进展及存在问题 |
1.2.2 乌拉根矿床研究进展及存在问题 |
1.3 研究内容及研究思路 |
1.3.1 研究内容 |
1.3.2 研究思路 |
1.4 主要工作量 |
1.5 论文创新点及特色 |
第2章 区域地质背景 |
2.1 大地构造位置 |
2.2 区域地层 |
2.3 区域构造 |
2.3.1 区域断裂特征 |
2.3.2 区域构造变形特征 |
2.4 区域岩浆岩 |
2.5 区域盆地构造演化 |
2.6 区域矿产 |
第3章 克孜勒苏群沉积环境及源区特征 |
3.1 乌恰盆地地层格架 |
3.2 克孜勒苏群沉积特征 |
3.3 碎屑锆石U-Pb年龄 |
3.4 克孜勒苏群第五岩性段源区特征 |
3.5 克孜勒苏群源沉积的动力学背景 |
第4章 乌拉根铅锌矿床地质 |
4.1 矿区地质 |
4.1.1 矿区地层 |
4.1.2 矿区构造 |
4.1.3 矿区岩浆岩 |
4.2 矿体特征 |
4.3 矿石特征 |
4.4 围岩蚀变 |
4.5 成矿期与成矿阶段 |
第5章 矿床地球化学特征 |
5.1 微量元素/稀土元素 |
5.2 硫同位素 |
5.3 碳氧同位素 |
5.4 铅同位素 |
5.5 流体包裹体测温 |
5.5.1 流体包裹体岩相学特征 |
5.5.2 均一温度和盐度 |
5.6 黄铁矿Re-Os同位素测年 |
第6章 乌拉根铅锌成矿作用 |
6.1 成矿年龄及其动力学背景 |
6.2 H_2S来源及形成机制 |
6.3 成矿金属来源及萃取机制 |
6.3.1 源于Pb同位素约束 |
6.3.2 源于REE元素约束 |
6.3.3 “红化”与“漂白”过程中金属元素迁移 |
6.4 成矿流体性质及来源 |
6.5 铅锌运移形式及沉淀机制 |
6.6 乌拉根铅锌成矿模式 |
第7章 西南天山砂岩容矿铅锌成矿规律 |
7.1 砂岩容矿铅锌矿床的时空分布 |
7.2 关键控矿要素 |
7.2.1 “含煤碎屑岩+红色碎屑岩+膏盐建造”盆地结构 |
7.2.2 油气运移与红层“漂白” |
7.2.3 古地理与古气候 |
7.3 找矿标志与找矿方向 |
7.3.1 找矿标志 |
7.3.2 找矿方向 |
第8章 结论及研究展望 |
致谢 |
参考文献 |
附录 |
附实验方法 |
个人简历及在校期间取得的成果 |
四、西天山北部地区成矿规律初探(论文参考文献)
- [1]西昆仑与西南天山结合部晚古生代沉积型锰矿床成矿规律与成矿预测[D]. 臧忠江. 中国地质大学, 2020
- [2]东天山阿齐山—雅满苏成矿带海相火山岩型铁矿成矿作用与成矿模式研究[D]. 宋哲. 中国地质大学, 2020(03)
- [3]西天山赛里木地区元古宙铅锌成矿作用研究[D]. 满荣浩. 中国地质大学(北京), 2020(01)
- [4]新疆赛博铜矿床成矿作用及找矿勘查研究[D]. 展新忠. 中国矿业大学, 2019(04)
- [5]新疆天山晚古生代岛弧环境矽卡岩型铅锌成矿作用[D]. 代俊峰. 中国地质大学(北京), 2019(02)
- [6]东天山-北山地区小狐狸山钼多金属矿床的成因研究[D]. 位鸥祥. 合肥工业大学, 2019(01)
- [7]新疆铁热克特乌增铁矿床地质特征及成因研究[D]. 罗杨. 成都理工大学, 2019(07)
- [8]新疆伊犁地块北缘晚古生代火山岩及其成矿构造背景意义[D]. 邢浩. 中国地质大学(北京), 2019(02)
- [9]伊宁地块地质背景及成矿规律研究[D]. 周煜杰. 长安大学, 2018(02)
- [10]新疆西南天山中—新生界砂岩容矿铅锌成矿作用 ——以乌拉根铅锌矿床为例[D]. 高荣臻. 中国地质大学(北京), 2018(08)