一、楔形变截面压弯构件平面内极限承载力(论文文献综述)
王谦[1](2016)在《高强钢楔形焊接工字形截面压弯构件整体稳定承载力研究》文中研究表明近年来,高强钢(fy≥460MPa)焊接工字形截面构件已在许多钢结构工程中得到了成功应用,并且取得了良好的经济效益。对于高强钢和楔形构件而言,较为合理的设计方法是采用宽而薄的截面,此方法虽容易导致腹板的局部屈曲,但腹板局部屈曲后并不意味着构件就丧失了承载力。因此,可适当放宽腹板高厚比,利用腹板屈曲后强度,使高强钢充分发挥其性能,降低钢材用量,降低工程造价,节约资源。本文采用ANSYS有限元软件建立钢材屈服强度为460MPa的楔形焊接工字形截面压弯构件模型计算柱子的平面内极限承载力,模型中考虑柱子的初始几何缺陷(局部、整体)、残余应力、材料非线性的影响,将有限元结果与已有的试验结果作对比,来验证有限元模型的正确性。本文中研究了构件腹板高厚比,长细比,翼缘宽厚比,楔率和荷载相对偏心率对其稳定承载力的影响。对部分构件不考虑残余应力计算其极限承载力,分析了残余应力对构件极限承载力的影响。并结合《门式刚架轻型房屋钢结构技术规程》中的设计公式,与有限元计算结果对比分析,对直接强度法设计公式和规程中公式进行修正。研究表明:增大腹板高厚比,截面刚度减小,柱子的极限承载力降低;增大翼缘的宽厚比,翼缘对腹板的约束作用减弱,柱子的极限承载力降低;增大柱子的长细比,柱子的整体刚度减小,极限承载力降低;但是增大柱子楔率,承载力变化不大。现行的《门式刚架轻型房屋钢结构技术规程》中的设计方法相对于有限元结果偏于保守,而提出的修正公式计算结果与有限元结果吻合较好。
王海青[2](2011)在《双坡楔形偏压柱平面内稳定的直接强度法》文中研究说明考虑板件屈曲后强度的方法主要有有效宽度法和直接强度法。有效宽度法的缺点是,必须根据截面上的应力分布计算有效宽度的大小和分布,而应力的大小又依赖于有效宽度的分布,这往往是非常繁琐的。为了克服这一弊端,本文依据北美冷弯型钢规范(AISI2004)提出了楔形偏压柱平面内稳定承载力的直接强度法(DSM)公式。首先利用ANSYS程序,在弹塑性、大挠度范围内,建立考虑相关屈曲作用的双坡楔形偏压柱的有限元模型,并模拟实际情况,在模型中引入初始几何缺陷和残余应力,研究腹板高厚比、楔率、构件长细比、荷载偏心率及残余应力对其稳定承载力的影响。分析研究了荷载作用位置对单坡楔形偏压柱平面内稳定承载力的影响,并将计算结果与双坡楔形偏压柱平面内稳定承载力进行比较,结果表明在施加荷载P和M大小相同情况下,单坡楔形偏压柱斜边受压时的承载力要高于直边受压时的承载力,并且斜边受压时的承载力与双坡情况下的承载力比较接近。其次依据北美冷弯型钢规范(AISI2004)提出三种楔形偏压柱平面内稳定承载力计算的直接强度法,并利用有限元结果对提出的直接强度法公式中的相关参数进行修正,最后将计算结果与有限元结果及《门式刚架轻型房屋钢结构技术规程》的计算值加以比较,选出一个合理、经济的计算方法。
李兰香[3](2011)在《楔形变截面构件的平面外弹塑性稳定研究》文中提出变截面构件在门式刚架厂房中的应用非常广泛,而平面外弯扭失稳是薄壁构件主要的失稳模式,比单独的弯曲失稳和扭转失稳要复杂得多。《门式刚架轻型房屋钢结构技术规程》(CECS 102:2002)中对变截面压弯构件的平面外稳定验算存在着不少问题,相关公式中轴力项取小端的内力及其截面性质,弯矩项取大端的内力及其截面性质,当楔形变截面柱退化成等截面柱时,“规程”(CECS 102:2002)中的公式不能退化成《钢结构规范》(GB 50017-2003)中的公式,造成规范之间不协调。对于梁的整体稳定系数则是来源于弹性临界弯矩公式,再进行必须的弹塑性折减,而实际受弯构件因存在初始缺陷,残余应力等影响,弯扭失稳已经不再是分岔屈曲问题,而是极值点失稳问题。另外,国内外规范对弯矩线性变化梁的整体稳定系数的计算采用不同的思路和方法,存在着较大争议,无法协调各个专家学者的意见。即使对等截面构件,目前的平面外稳定计算公式也还是有改进的余地,例如,在M小/M大=-1时,βtx=0.3,对弯矩折减很大,此时轴力大时平面外稳定公式起控制作用;而弯矩大时,强度公式起控制作用。本文主要对变截面构件的平面外弹塑性稳定进行研究。首先,在已有研究的基础上根据经典薄壁理论,推导了变截面压弯构件的总应变能公式,在推导时,考虑了轴力和弯矩两项,并在推导的整个过程中都考虑变截面构件单轴对称时剪心轴和形心轴夹角αcs的影响,不仅适用于双轴对称变截面也适用于单轴对称变截面。其次,利用有限单元法对总应变能公式进行刚度矩阵的推导,并利用Ansys有限元程序进行算例分析,来验证本文理论的正确性。除此之外,本文的重点在于对变截面梁和变截面压弯杆的平面外弹塑性研究,变截面梁受不等弯矩作用,取小端截面和大端截面的最大应力比值分别为-1.0、-0.5、0、0.5和1.0,考虑构件本身的初始缺陷和两种残余应力模式,通过Ansys分析的结果拟合得到精度较高的整体稳定系数公式,同样,对变截面压弯杆进行类似的弹塑性分析,通过对大量算例的计算数据,提出一种光滑的轴力-弯矩相关作用曲线,得到新的平面外验算公式。
张尧[4](2010)在《楔形宽腹工字形截面压弯构件平面内稳定承载力的试验研究》文中提出楔形宽腹工字形截面构件以其合理的受力形式,在门式刚架中被广泛应用。近年来,我国学者对楔形宽腹工字形截面偏心受压构件的极限承载力做了相关的研究,得出了一些有用的结论,但缺少试验的验证。本文主要完成了下面的工作:首先通过试验,研究大头截面腹板高厚比、相对偏心率和长细比三个参数变化对试件极限承载力的影响。然后采用ANSYS有限元分析软件,对试件进行分析计算。为了更好的模拟实际情况,在模型中考虑试件初始几何缺陷和残余应力的影响,计算结果与试验结果吻合较好。以此为基础改变试件模型的几何参数,进行大量计算,参照《门式刚架轻型房屋钢结构技术规程》(CECS 102:2002)拟合出实用设计公式。
郭彦林,江磊鑫,张婀娜[5](2009)在《卷边翼缘工形变截面构件在压弯荷载作用下平面内稳定承载性能研究》文中提出针对卷边工形变截面构件在压弯作用下的面内稳定承载性能进行研究,并在已有的卷边工形等截面压弯构件面内稳定承载力公式的基础上,参照CECS 102∶2002《门式刚架轻型房屋钢结构技术规程》中的变截面构件设计方法,给出卷边工形变截面构件压弯平面内稳定承载力的计算公式。楔率是影响变截面构件稳定承载力的重要因素,设计了一系列算例,重点考察楔率对变截面卷边工形构件稳定承载性能的影响,同时也验证了所给出的平面内稳定承载力计算公式的准确性和适用性。
闫寒[6](2009)在《楔形工形柱平面内稳定承载力研究》文中指出近些年来,轻型门式刚架结构在工业以及民用建筑中得到了广泛的应用,其中受力合理的楔形构件也出现在门式刚架结构中。轻型门式刚架结构具有造型轻巧、施工快捷、经济效益高等诸多优点,它的稳定性研究对于合理的结构设计,推动轻型钢结构的发展具有很深远的意义。因此,对楔形构件的相关屈曲性能的研究以及对楔形构件稳定问题的研究已经成为众多学者关注的焦点。本文通过12根楔形工形柱的试验研究,分析了楔率以及偏心距对楔形柱平面内稳定承载力的影响。试验结果表明:楔率是影响楔形构件平面内稳定承载力的主要参数。随着楔率的增大,构件的稳定极限承载力也随之增加。随着荷载偏心距的增大,构件的稳定极限承载力降低。同时结合ABAQUS软件对楔形工形柱的受力过程进行模拟分析,其结果与试验实测结果较为吻合。本文对楔形工形柱进行了参数分析。通过改变有限元模型的腹板宽厚比,翼缘宽厚比,楔率,构件长细比等参数,得出构件平面内稳定承载力的有限元计算结果,并研究了几何参数对楔形工形柱平面内稳定承载力的影响。将有限元模拟计算结果与《门式刚架轻型房屋钢结构技术规程》(CECS102:2002)计算的结果进行比较发现:《规程》计算结果偏于安全。通过有限元分析研究和试验相结合的方法能更加深入的研究楔形柱的几何参数对其平面内稳定承载力的影响。
张吉良[7](2009)在《无侧移楔形变截面门式刚架柱平面内等效弯矩系数研究》文中研究指明楔形构件截面变化形式接近荷载作用下的弯矩图,材料分布合理,外形轻巧美观。因其具有重量轻、外形美观、制造方便、施工快捷、质量可靠、建设投资回收快等优点,近年来在我国发展迅速。尽管国内外对变截面构件的研究不少,但大部分局限于研究极限承载力,在等效弯矩系数方面鲜有研究。现行规范《门式刚架轻型房屋钢结构技术规程》对楔形变截面刚架柱的稳定计算借鉴等截面构件的稳定计算公式,但平面内等效弯矩系数仅对有侧移刚架柱做出规定βm=1,对于无侧移楔形变截面刚架柱平面内等效弯矩系数未作任何规定,这给设计和工程实践带来了不便。本文基于平衡法和有限元理论对无侧移楔形变截面门式刚架柱平面内等效弯矩系数进行了深入研究,并取得一些有价值的研究成果,可为工程实践及规范修订提供参考。本文取得的主要研究成果如下:(1)采用平衡法结合MAPLE 12数学计算软件推导了三类典型受力情况下无侧移楔形变截面门式刚架柱平面内等效弯矩系数的理论解;(2)用单个因素变化的方法,分析了理论解中各因素对等效弯矩系数的影响,并借助大型通用有限元软件ANSYS,在考虑材料初始几何缺陷及残余应力的情况下对等效弯矩系数进行了非线性弹塑性有限元分析,通过ANSYS非线性弹塑性有限元分析结果对等效弯矩系数的理论解进行了验证;(3)根据等效弯矩系数的理论解计算了三类典型受力情况下无侧移楔形变截面门式刚架柱平面内等效弯矩系数,并借助MATLAB软件对大量计算结果进行拟合,通过拟合提出了一系列可供指导工程实践的实用计算公式;(4)结合本文等效弯矩系数研究成果与现行规范《门式刚架轻型房屋钢结构技术规程》,计算了无侧移楔形变截面门式刚架柱平面内稳定极限承载力,并将规程计算结果与ANSYS非线性计算结果进行比较。通过比较发现:规程计算的稳定极限承载力比ANSYS非线性计算结果更小,规程计算的结果是偏于安全的,可作为可靠的设计依据。
杨应华,赵强,张咪[8](2008)在《基于ANSYS的楔形宽薄腹工形截面压弯构件的平面内稳定性分析》文中研究说明应用非线性板壳有限元理论,结合ANSYS程序对楔形宽薄腹工形截面压弯构件的平面内稳定承载力进行非线性分析。在考虑了腹板局部屈曲与构件整体屈曲的相关作用的同时,引入构件整体缺陷,腹板的局部缺陷以及残余应力,研究了构件几何参数以及残余应力对构件弹塑性稳定承载力的影响。
高轩能,黄文欢,李琨,徐小波[9](2008)在《变截面门式刚架稳定及地震反应研究进展》文中指出变截面轻钢门式刚架为我国单层大跨度工业和仓储建筑的主要结构形式。本文简要回顾了国内外变截面轻钢门式刚架稳定和地震反应研究的概况,介绍了其稳定分析及稳定设计方法的新进展以及地震反应理论分析、实验研究和分析方法的新进展,指出了目前在稳定和动反应研究及工程应用中存在的问题。针对我国相关现行规范在变截面门式刚架稳定和抗震设计方面规定的不足和存在的缺陷,提出了在稳定、地震反应及极限承载能力的判定方法等方面的研究建议。
贾川[10](2008)在《薄腹工形变截面双向压弯构件的稳定性能分析》文中研究指明本文利用有限元程序ANSYS,考虑材料非线性,几何非线性,腹板局部屈曲与构件整体屈曲的相关作用,初始几何缺陷及残余应力,建立了能较好反映实际情况的薄腹工形变截面双向压弯构件的有限元模型。通过改变有限元模型中的腹板宽厚比,构件长细比,楔率,残余应力等参数,得出构件稳定极限承载力的有限元结果,研究了上述几何参数以及残余应力对薄腹工形变截面双向压弯构件弹塑性稳定承载力的影响。根据《钢结构设计规范》(GB50017-2003)和《门式刚架轻型房屋钢结构技术规程》(CECS 102:2002),提出薄腹工形变截面双向压弯构件稳定极限承载力的两种简化计算方法,将两种简化方法的计算结果与有限元结果进行比较,表明两种简化方法大部分情况均是安全的,在个别情况下偏不安全。
二、楔形变截面压弯构件平面内极限承载力(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、楔形变截面压弯构件平面内极限承载力(论文提纲范文)
(1)高强钢楔形焊接工字形截面压弯构件整体稳定承载力研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 前言 |
1.1.1 高强度钢的性能与应用 |
1.2 高强度钢的研究进展 |
1.2.1 残余应力的测量 |
1.2.2 整体稳定受力性能 |
1.2.3 局部稳定性能 |
1.2.4 相关屈曲性能 |
1.3 轻型门式刚架的特点 |
1.3.1 楔形构件的研究进展 |
1.3.2 相关屈曲及其方法 |
1.4 研究内容 |
2 有限元模型 |
2.1 有限元模型的建立 |
2.1.1 单元的选取 |
2.1.2 模型的建立 |
2.1.3 施加约束 |
2.2 初始几何缺陷与残余应力的施加 |
2.2.1 模型的初始几何缺陷 |
2.2.2 残余应力的施加 |
2.3 材料的本构关系 |
2.4 加载与求解 |
2.4.1 荷载的施加 |
2.4.2 求解与后处理 |
2.5 对模型的验证 |
2.5.1 对薄腹构件的验证 |
2.5.2 对楔形构件的验证 |
2.5.3 对高强度钢材H形截面弱轴压弯柱的验证 |
2.6 本章小结 |
3 不同因素作用下有限元结果分析 |
3.1 参数的选取 |
3.2 腹板高厚比的影响 |
3.3 翼缘宽厚比的影响 |
3.4 构件长细比的影响 |
3.5 楔率变化的影响 |
3.6 残余应力的影响 |
3.7 本章小结 |
4 高强工字形截面楔形柱压弯构件的设计公式 |
4.1 钢结构设计规范的设计方法 |
4.2 门式刚架轻型房屋钢结构技术规程中的计算方法 |
4.3 直接强度法 |
4.3.1 北美规范中的直接强度法 |
4.3.2 针对偏心受压构件所改进的直接强度法 |
4.4 改进门式刚架规程中的计算公式 |
4.4.1 公式修正 |
4.4.2 有限元结果与改进公式结果对比 |
4.5 采用直接强度法对门规公式的修正 |
4.5.1 两种直接强度法计算与有限元结果的对比 |
4.5.2 设计公式的修正 |
4.6 几种计算方法的比较 |
4.7 本章小节 |
5 结论与展望 |
5.1 结论 |
5.2 展望 |
参考文献 |
致谢 |
(2)双坡楔形偏压柱平面内稳定的直接强度法(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 本课题来源、目的和研究内容 |
1.1.1 课题来源 |
1.1.2 目的和研究内容 |
1.2 研究现状 |
1.2.1 楔形柱的研究现状 |
1.2.2 直接强度法的研究现状 |
2 双坡楔形偏压构件有限元模型的建立 |
2.1 引言 |
2.2 定义材料属性 |
2.3 单元类型的选取 |
2.4 几何及有限元模型建立 |
2.5 边界条件及模型描述 |
2.6 初始几何缺陷的施加 |
2.7 网格密度的确定 |
2.8 残余应力的分布模式及施加方法 |
2.8.1 残余应力的分布模式 |
2.8.2 残余应力的施加方式 |
2.9 ANSYS非线性屈曲分析求解方法的选择 |
2.10 ANSYS分析模型结果验证 |
2.11 本章小结 |
3 各种参数下的有限元计算与分析 |
3.1 计算构件设计 |
3.2 残余应力的影响 |
3.3 楔率的影响 |
3.4 构件长细比的影响 |
3.5 腹板高厚比的影响 |
3.6 荷载作用位置的影响 |
3.7 本章小结 |
4 双坡楔形偏压柱的直接强度法 |
4.1 引言 |
4.2 “门式刚架规程”的计算公式 |
4.3 改进的“门式刚架规程”计算公式 |
4.4 直接强度法公式 |
4.4.1 直接强度法1(DSM1) |
4.4.2 直接强度法2(DSM2) |
4.4.3 直接强度法3(DSM3) |
4.4.4 DSM参数的修正 |
4.5 各种计算方法的比较 |
4.6 本章小结 |
5 结论和展望 |
致谢 |
参考文献 |
(3)楔形变截面构件的平面外弹塑性稳定研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
第一章 绪论 |
1.1 引言 |
1.2 研究背景 |
1.3 文献综述 |
1.3.1 变截面构件的平面内稳定性研究 |
1.3.2 变截面构件的平面外稳定性研究 |
1.4 研究内容 |
第二章 楔形工字型压弯柱的弹性弯扭屈曲 |
2.1 楔形变截面构件的应力 |
2.1.1 坐标系 |
2.1.2 正应力及其合力 |
2.1.3 横向荷载作用下的剪应力 |
2.1.4 横向正应力 |
2.2 楔形变截面构件弯扭失稳时的线性应变能 |
2.2.1 变截面梁的自由扭转 |
2.2.2 变截面梁的翘曲扭转 |
2.2.3 绕弱轴的弯曲 |
2.3 楔形变截面压弯柱的非线性应变能 |
2.3.1 非线性应变 |
2.3.2 非线性应变能推导的假设 |
2.3.3 纵向应力的非线性正应变能 |
2.3.4 剪应力的非线性应变能 |
2.3.5 横向正应力非线性应变能 |
2.3.6 总非线性应变能 |
2.4 本章小结 |
第三章 楔形工字型压弯柱的有限元分析和讨论 |
3.1 楔形构件的截面特性 |
3.2 楔形工字型压弯柱刚度矩阵的推导 |
3.2.1 有限元基本理论 |
3.2.2 单元的位移函数 |
3.2.3 单元刚度矩阵推导 |
3.3 有限元编程概述 |
3.4 有限元分析的结果讨论 |
3.4.1 单元类型 |
3.4.2 Ansys参数设置说明 |
3.4.3 网格划分 |
3.4.4 荷载及边界条件 |
3.4.5 屈曲分析和耦合设置 |
3.5 算例分析 |
3.5.1 双轴对称变截面受轴压荷载作用 |
3.5.2 双轴对称变截面受弯矩荷载作用 |
3.5.3 双轴对称变截面受压弯荷载作用 |
3.5.4 单轴对称变截面受轴压荷载作用 |
3.5.5 单轴对称变截面受弯矩荷载作用 |
3.5.6 单轴对称变截面受压弯荷载作用 |
3.6 结果分析与比较 |
3.6.1 分析结果总结 |
3.6.2 相对误差分析 |
3.7 本章小结 |
第四章 楔形变截面压杆绕弱轴屈曲的稳定承载力 |
4.1 引言 |
4.2 ANSYS有限元弹塑性分析概述 |
4.2.1 理论分析 |
4.2.2 初始缺陷 |
4.2.3 残余应力 |
4.3 变截面压杆绕弱轴屈曲的稳定承载力 |
4.3.1 算例分析 |
4.3.2 直线型残余应力 |
4.3.3 抛物线型残余应力 |
4.4 本章小结 |
第五章 楔形变截面梁的平面外弹塑性稳定 |
5.1 引言 |
5.2 理论分析 |
5.2.1 相关问题概述 |
5.2.2 本文思路 |
5.3 算例分析 |
5.3.1 直线型残余应力 |
5.3.2 抛物线型残余应力 |
5.4 本章小结 |
第六章 楔形变截面压弯杆的平面外弯扭失稳 |
6.1 引言 |
6.2 国内外平面外稳定公式的比较 |
6.3 计算模型概述 |
6.3.1 Ansys分析结果与规范公式的对比 |
6.3.2 计算模型验证 |
6.4 算例分析与拟合公式 |
6.4.1 直线型残余应力 |
6.4.2 抛物线型残余应力 |
6.5 本章小结 |
第七章 结论与展望 |
7.1 本文内容总结 |
7.2 本文的不足与发展 |
参考文献 |
作者简历及科研成果 |
(4)楔形宽腹工字形截面压弯构件平面内稳定承载力的试验研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 引言 |
1.2 工字形压弯构件的研究现状 |
1.2.1 国外的研究现状 |
1.2.2 国内的研究现状 |
1.3 本文的研究内容 |
2 试验研究 |
2.1 引言 |
2.2 试件设计 |
2.3 材性试验 |
2.4 楔形宽腹工字形截面构件偏心受压试验 |
2.4.1 试验装置 |
2.4.2 测点布置 |
2.4.3 实际计算长度的确定 |
2.4.4 初始缺陷的测量 |
2.4.5 试件定位及加载 |
3 试验结果分析 |
3.1 试验现象 |
3.2 极限承载力分析 |
3.2.1 大头截面腹板高厚比对极限承载力的影响 |
3.2.2 试件长细比对极限承载力的影响 |
3.2.3 相对偏心率对极限承载力的影响 |
3.3 跨中荷载-挠度曲线分析 |
3.4 荷载-应变曲线分析 |
3.4.1 跨中翼缘荷载-应变曲线分析 |
3.4.2 腹板相对位置荷载-应变曲线分析 |
4 有限元分析及公式拟合 |
4.1 引言 |
4.2 有限元模型的建立 |
4.2.1 有限元模型采用的单元 |
4.2.2 初始几何缺陷的施加和边界条件的确定 |
4.2.3 模型建立 |
4.2.4 残余应力的考虑 |
4.2.5 算例 |
4.3 试验值、《门规》值、有限元值对比分析 |
4.3.1 试件变形的对比分析 |
4.3.2 荷载-挠度曲线的对比分析 |
4.3.3 极限承载力的对比分析 |
4.4 参数计算及分析 |
4.4.1 长细比变化时构件的变形分析 |
4.4.2 相对偏心率变化时构件的变形分析 |
4.4.3 极限承载力分析 |
4.5 设计公式的拟合及分析 |
4.5.1 设计公式拟合 |
4.5.2 公式值与有限元值对比分析 |
4.5.3 公式值与试验值对比分析 |
5 结论与展望 |
5.1 结论 |
5.2 展望 |
致谢 |
参考文献 |
附录 在研期间发表的论文 |
(5)卷边翼缘工形变截面构件在压弯荷载作用下平面内稳定承载性能研究(论文提纲范文)
0 引 言 |
1 卷边工形变截面构件设计方法 |
2 计算模型 |
3 有限元算例分析 |
3.1 算例设计 |
3.2 构件破坏模式 |
3.3 轴力-弯矩承载力相关曲线 |
3.4 公式验证 |
4 结 论 |
(6)楔形工形柱平面内稳定承载力研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 轻型门式刚架结构及其发展概况 |
1.2 变截面构件及变截面门式刚架的研究进展 |
1.2.1 楔形变截面柱的应用 |
1.2.2 国外的理论研究现状及成果 |
1.2.3 国内的理论研究现状及成果 |
1.3 相关屈曲分析理论与分析方法 |
1.4 目前变截面柱的稳定设计方法 |
1.4.1 关于楔形变截面构件楔率的变化范围 |
1.4.2 关于楔形变截面构件稳定的研究方法 |
1.4.3 变截面柱平面内稳定计算公式 |
1.5 本文的主要研究内容 |
2 楔形变截面柱试验研究 |
2.1 试验目的 |
2.2 试件设计与实验说明 |
2.2.1 试件设计 |
2.2.2 试件测点布置 |
2.2.3 试验装置及加载程序 |
2.3 试验结果分析 |
2.3.1 试件的破坏形态 |
2.3.2 试验数据分析 |
2.3.3 破坏形态分析 |
2.4 小结 |
3 楔形工形柱有限元分析 |
3.1 非线性有限元理论 |
3.1.1 非线性有限元方程的解法 |
3.1.2 直接求解法 |
3.1.3 增量法 |
3.1.4 迭代法 |
3.1.5 弧长法 |
3.2 有限元分析软件简介 |
3.3 楔形柱整体屈曲有限元模型的建立 |
3.3.1 模型的建立及材料参数的确定 |
3.3.2 约束条件 |
3.3.3 残余应力的分布模式及施加方法 |
3.4 计算结果分析 |
3.4.1 有限元模型变形效果图 |
3.4.2 有限元模型平面内稳定极限承载力分析 |
4 楔形工形柱平面内稳定承载力研究 |
4.1 规程对楔形柱平面内稳定的计算规定 |
4.1.1 利用有效截面法计算平面内稳定极限承载力 |
4.1.2 计算长度的取值 |
4.1.3 算例 |
4.2 楔形工形柱的参数分析 |
4.2.1 腹板宽厚比对楔形柱极限承载能力的影响 |
4.2.2 翼缘宽厚比对楔形柱极限承载能力的影响 |
4.2.3 楔率对楔形柱极限承载能力的影响 |
4.2.4 构件长细比对楔形柱极限承载能力的影响 |
4.2.5 部分楔形柱变形图 |
4.3 小结 |
结论 |
参考文献 |
在学研究成果 |
致谢 |
(7)无侧移楔形变截面门式刚架柱平面内等效弯矩系数研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 引言 |
1.2 课题背景及来源 |
1.3 门式刚架结构概况 |
1.3.1 门式刚架的结构形式 |
1.3.2 变截面门式刚架的特点 |
1.3.3 楔形门式刚架结构的有侧移及无侧移失稳 |
1.4 钢结构的稳定性问题 |
1.4.1 平衡分岔失稳 |
1.4.2 极值点失稳 |
1.4.3 跃越失稳 |
1.5 钢结构稳定性分析的基本方法 |
1.5.1 平衡法 |
1.5.2 能量法 |
1.5.3 动力法 |
1.5.4 数值法 |
1.6 国内外研究概况 |
1.6.1 国内研究概况 |
1.6.2 国外研究概况 |
1.7 本文的主要工作 |
1.7.1 以往研究的不足和存在的问题 |
1.7.2 本文的主要工作 |
第2章 等截面压弯构件平面内等效弯矩系数概述 |
2.1 引言 |
2.2 《钢结构设计规范》对等效弯矩系数的规定 |
2.3 压弯构件等效弯矩系数概述 |
2.4 等截面压弯构件平面内等效弯矩系数 |
2.4.1 不等端弯矩作用下等截面压弯构件平面内等效弯矩系数 |
2.4.2 横向均布荷载作用下等截面压弯构件平面内等效弯矩系数 |
2.4.3 跨中集中荷载作用下等截面压弯构件平面内等效弯矩系数 |
2.5 本章小结 |
第3章 无侧移楔形变截面刚架柱平面内等效弯矩系数 |
3.1 引言 |
3.2 楔形刚架柱截面惯性矩 |
3.3 数学软件MAPLE简介 |
3.3.1 MAPLE的发展 |
3.3.2 MAPLE的构成和功能 |
3.3.3 MAPLE的特点 |
3.3.4 MAPLE的优势 |
3.4 无侧移楔形刚架柱平面内等效弯矩系数的理论分析 |
3.4.1 研究对象 |
3.4.2 基本假定 |
3.4.3 不等端弯矩作用下无侧移楔形刚架柱等效弯矩系数的理论解 |
3.4.4 横向均布荷载作用下无侧移楔形刚架柱等效弯矩系数的理论解 |
3.4.5 跨中集中荷载作用下无侧移楔形刚架柱等效弯矩系数的理论解 |
3.5 本章小结 |
第4章 等效弯矩系数影响因素分析 |
4.1 引言 |
4.2 非线性理论 |
4.3 有限元模型的建立 |
4.3.1 有限元模型的描述 |
4.3.2 材料模型 |
4.3.3 单元的选取 |
4.3.4 残余应力 |
4.3.5 初始几何缺陷 |
4.3.6 ANSYS求解步骤及方法 |
4.4 影响因素分析 |
4.4.1 不等端弯矩作用下无侧移楔形刚架柱平面内等效弯矩系数 |
4.4.2 横向均布荷载作用下无侧移楔形刚架柱平面内等效弯矩系数 |
4.4.3 跨中集中荷载作用下无侧移楔形刚架柱平面内等效弯矩系数 |
4.5 本章小结 |
第5章 等效弯矩系数的实用计算公式 |
5.1 引言 |
5.2 拟合方法介绍 |
5.3 等效弯矩系数的实用计算公式 |
5.3.1 不等端弯矩作用下无侧移楔形刚架柱平面内等效弯矩系数 |
5.3.2 横向均布荷载作用下无侧移楔形刚架柱平面内等效弯矩系数 |
5.3.3 跨中集中载作用下无侧移楔形刚架柱平面内等效弯矩系数 |
5.4 等效弯矩系数建议计算公式 |
5.5 规程计算平面内稳定承载力与ANSYS计算结果的对比 |
5.5.1 《门式钢架轻型房屋钢结构技术规程》的计算方法 |
5.5.2 ANSYS的计算方法 |
5.5.3 极限承载力比较 |
5.6 本章小结 |
第6章 结论与展望 |
6.1 本文工作的总结 |
6.2 本文工作的不足和发展 |
致谢 |
参考文献 |
附录 |
攻读硕士学位期间发表的论文及科研成果 |
(10)薄腹工形变截面双向压弯构件的稳定性能分析(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 轻型门式刚架结构 |
1.1.1 轻型门式刚架的结构形式 |
1.1.2 轻型门式刚架的受力特点 |
1.2 薄腹工字形变截面双向压弯构件的研究进展 |
1.3 研究内容和采用措施 |
第二章 非线性有限元在稳定分析中的应用 |
2.1 引言 |
2.2 非线性有限元的基本理论 |
2.2.1. T.L格式和U.L.格式 |
2.2.2. U.L格式的增量方程 |
2.3 稳定问题的双重非线性有限元分析概述 |
2.3.1 几何非线性问题的原理和方法 |
2.3.2 材料非线性问题的原理和方法 |
第三章 有限元模型的建立 |
3.1 引言 |
3.2 通用有限元程序ANSYS的前置处理 |
3.2.1 建立有限元模型所需输入的资料 |
3.2.2 材料特性 |
3.3 ANSYS的加载与求解 |
3.3.1 添加载荷和约束 |
3.3.2 求解控制 |
3.4 ANSYS的后处理 |
3.5 计算模型的验证 |
3.5.1 对薄腹构件的验证 |
3.5.2 对双向压弯构件的验证 |
第四章 薄腹工形变截面双向压弯构件极限承载力分析 |
4.1 引言 |
4.2 薄腹工形变截面双向压弯构件的计算公式 |
4.2.1 对双向压弯构件的计算办法 |
4.2.2 对薄腹构件的计算办法 |
4.2.3 对薄腹工形变截面双向压弯构件的简化计算办法 |
4.3 薄腹工形变截面双向压弯构件的参数分析 |
4.3.1 构件的几何尺寸 |
4.3.2 腹板宽厚比对构件极限承载能力的影响 |
4.3.3 长细比对构件极限承载能力的影响 |
4.3.4 楔率对构件极限承载能力的影响 |
4.3.5 残余应力对构件极限承载能力的影响 |
4.4 小结 |
第五章 结论与展望 |
5.1 结果综述 |
5.2 论文研究展望 |
参考文献 |
致谢 |
四、楔形变截面压弯构件平面内极限承载力(论文参考文献)
- [1]高强钢楔形焊接工字形截面压弯构件整体稳定承载力研究[D]. 王谦. 西安建筑科技大学, 2016(05)
- [2]双坡楔形偏压柱平面内稳定的直接强度法[D]. 王海青. 西安建筑科技大学, 2011(12)
- [3]楔形变截面构件的平面外弹塑性稳定研究[D]. 李兰香. 浙江大学, 2011(07)
- [4]楔形宽腹工字形截面压弯构件平面内稳定承载力的试验研究[D]. 张尧. 西安建筑科技大学, 2010(12)
- [5]卷边翼缘工形变截面构件在压弯荷载作用下平面内稳定承载性能研究[J]. 郭彦林,江磊鑫,张婀娜. 工业建筑, 2009(09)
- [6]楔形工形柱平面内稳定承载力研究[D]. 闫寒. 内蒙古科技大学, 2009(07)
- [7]无侧移楔形变截面门式刚架柱平面内等效弯矩系数研究[D]. 张吉良. 西南石油大学, 2009(06)
- [8]基于ANSYS的楔形宽薄腹工形截面压弯构件的平面内稳定性分析[A]. 杨应华,赵强,张咪. 钢结构工程研究(七)——中国钢结构协会结构稳定与疲劳分会2008年学术交流会论文集, 2008(总第115期)
- [9]变截面门式刚架稳定及地震反应研究进展[J]. 高轩能,黄文欢,李琨,徐小波. 西北地震学报, 2008(02)
- [10]薄腹工形变截面双向压弯构件的稳定性能分析[D]. 贾川. 西安建筑科技大学, 2008(09)