浅谈建构性思维在数学解题中的应用

浅谈建构性思维在数学解题中的应用

一、浅谈构造思维在数学解题中的应用(论文文献综述)

杨雨桐[1](2021)在《高中生数学逆向思维能力的现状调查研究与决策》文中指出党的十八大以来,习近平总书记将创新摆在国家发展全局的核心位置。科技的发展、社会的进步都要靠不断的创新。而逆向思维则是创新思维的重要组成部分,是创新思维训练的载体,因此在数学教学中就必须要加强对学生逆向思维能力的培养,培养学生的逆向思维能力可以提高学生思维的灵活性、发散性,帮助学生转换思路,从多角度看待问题、解决问题。这对于发展学生的创新思维有很大帮助。高中阶段是学生思维发展的重要阶段,如果教师能够在这一时期抓住机会培养学生的逆向思维,那对于学生未来创新能力的发展将会有很大帮助。因此本课题的研究具有重要的理论与实践意义。为帮助高中数学教师有针对性的加强对学生数学逆向思维能力的培养,笔者采用文献法、访谈法、测试卷法进行研究。通过测试卷,调查了学生具体数学逆向思维解题方法的运用情况并在测试后结合测试结果对学生进行随机访谈;通过教师访谈,调查了教师对于逆向思维培养的看法、教学方式的选择、思维培养的困境等问题。调查发现当前在数学逆向思维培养的过程中存在着课堂教学形式单一、教学评价方式单一、学生思维定势严重、对问题思考度不足、概括反思能力较差以及学生学习信心不足等问题。针对学生数学逆向思维能力的现状调查与研究,笔者提出了提高教师自身素养和在课堂中通过对数学概念、数学定理、数学公式、数学方法的教学加强学生数学逆向思维能力培养的建议,以供一线教师参考。

易梦[2](2021)在《基于逆向思维探究初中平面几何辅助线方法研究》文中研究说明初等几何往往明借图形直观,暗取数学常识.初中平面几何解题的基本途径是建构已知条件和验证结论之间的支架,作为系统性极强的板块,平面几何中繁多的定理衍生出多种作辅助线的方式.几何题千变万化,辅助线也是千变万化的,从而导致辅助线问题成为平面几何学习的难点.因此探求有效且符合初中学情的辅助线的教学方法,对于身在一线的初中数学教师如何有效地教与学生简捷地学都具有重大意义,不仅有助于完善辅助线的相关教学理论,也有助于学生掌握数学知识内部规律,建立认知结构,提升数学思维层次和数学学习能力.本研究以逆向思维作为立足点探析平面几何辅助线的作法.首先开篇明义,明确研究目的与意义;其次运用文献研究法论述相关研究现状以及理论基础,在初中生思维水平和障碍分析的基础上对学生在平面几何添设辅助线学习过程中产生的疑难环节及其原因进行调查分析,同时采取访谈法对初中数学教师进行关于辅助线教学方法的研讨;在文献研究和调查分析的基础上介绍逆向思维引领下的初中平面几何辅助线的作法,主要包括作辅助线的基础(作图公法和基础作图表)和基本方法、基本辅助线、分析法巧设辅助线以及分析树模型;然后以具体教学案例分析展现逆向思维在提升学生的辅助线添设能力中的重大作用.通过研究得到如下结论:辅助线教学现状中,学生知识结构薄弱、思维受限和推理能力弱、教师对辅助线的教学浅尝辄止,没有深入到盘根错节的几何知识内容中.因而结合初中数学整体知识结构,巧妙分析平面几何各部分图形之间的联系,以分区化块的形式剖析基本图形,描绘不同图形的辅助线作法.运用逆向思维帮助学生梳理合适辅助线出现的途径,以分析树模型清晰直观的展示思维过程,帮助教师的施教和学生的学习打造强劲引擎,拓宽阳光大道.研究发现教师需要从几何直观和逆向思维的培养两个层面来提升学生的辅助线添设能力.作为教学的主导者,教师在“二次开发教材”的基础上,降低坡度,搭建合理化桥梁,设置辅助线专题训练,引导学生条析审题,及时指导归纳辅助线的作法.

王秋硕[3](2021)在《基于波利亚解题思想下的高中三角函数解题策略研究》文中研究说明解题是数学教学的核心,解题教学也一直是国内外专家学者研究的重点问题。三角函数作为高中数学的重点知识模块,在高考中具有举足轻重的地位,学生在解三角函数问题时又往往存在困难。因此,本文将波利亚解题思想与三角函数解题相结合,探索出适用于三角函数问题的相关解题策略,对学生的三角函数解题实践具有指导意义。本文采取文献分析法和案例分析法,以波利亚解题思想为基础,对高中三角函数部分的《课标》、教科书以及相关高考题目进行探析,结合高中生在解决三角函数问题时所产生的障碍,归纳整理出了十条波利亚解题思想下的三函数解题策略如下,理解题目阶段:1.梳理显性条件;2.引入辅助工具;3.挖掘隐性条件。拟定方案阶段:1.寻找问题联系;2.变换问题表征;3.回归问题本身。执行方案阶段:1.细化解题步骤;2.检查每一个步骤。回顾反思阶段:1.优化解题方式;2.建立解题模型。随后,笔者对该三角函数解题策略的实践意义进行研究,利用该解题策略解决三角函数部分的三类典型问题并建立相关的解题模型,让学生体会如何在解题时寻找思路。最后基于波利亚解题思想提出有关三角函数解题教学的八条建议如下,理解题目阶段:1.创设生活情景,激发解题兴趣;2.借助元认知监控,提升审题能力。拟定方案阶段:1.呈现同类问题,理清问题联系;2.活用三角公式,寻找解题思路。执行方案阶段:1.分析步骤意图,体会解题思想;2.规范书写步骤,提高纠错能力。回顾反思阶段:1.重视典型例题,建立解题程序;2.巧用变式教学,培养创新思维。随后基于以上教学建议设计了两节三角函数习题课的教学案例,对其实用性与可行性进行探索。本文不仅仅是波利亚解题思想的一种推广,也对学生的解题实践以及一线教师的解题教学有着重要的指导价值。

刘印平[4](2021)在《学科核心素养视角下的数学思想方法教学研究》文中研究指明《普通高中数学课程标准(2017年版)》在“四基”、“四能”、“三会”和一个“科学精神”的课程目标下,凝练了六大数学核心素养,并提出了基于核心素养的教学。“四基”作为数学核心素养的有效载体,数学思想方法又是数学基本思想在操作层面上的体现,故数学核心素养的培养过程可建立在数学思想方法的基础上。在渗透数学思想方法的教学中,如何发展学生的数学核心素养便成为了一线教师在实际教学中需要密切关注的问题。本文基于数学核心素养的视角,采用问卷调查与访谈、前测与后测的方式,进行数学思想方法的教学研究;探讨了数学思想方法与数学核心素养的联系,主要研究数学思想方法的教学能否提升数学核心素养,以及数学核心素养导向下如何进行数学思想方法的教学设计。首先对数学核心素养与数学思想方法的研究作了概述,并分析了两者之间的联系。接着构建了高中数学中常见的分类讨论、数形结合、函数与方程和化归与转化等四种数学思想方法的运用水平层次分析框架,进行了研究的设计和调查工具的编制。然后利用教师调查问卷了解高中数学思想方法“教”的现状,借助前测试题分析高中数学思想方法学生“学”的现状;研究发现:教师们对数学核心素养的教学理念和实践都存在一定不足,对渗透数学思想方法的教学有待改进和优化。再通过解题教学剖析了掌握数学思想方法与达成数学核心素养目标的一致性,针对渗透数学思想方法教学现状的分析,提出了针对性的教学策略:要制定合理的数学思想方法与核心素养目标,将它们融入整个教学过程的设计中;重视培养四基和四能的情境创设,用问题激活数学思想方法;关注学生思维与推理过程的表达,引导学生在知识的发生与发展过程中领悟数学思想方法;在运用数学思想方法的解题中,提升数学核心素养。最后对选定的课题进行教学实践,对比与分析前后测以及教师访谈的结果,得出最终结论:基于数学核心素养的数学思想方法教学能让学生理解数学知识的本质,这样的课堂能够调动学生的积极性,学生成绩得到普遍提高,在掌握数学思想方法的同时可以提升数学核心素养。本研究旨在帮助教师从整体上把控数学思想方法在高中数学知识体系中的渗透,在数学核心素养理念下,实现数学思想方法的有效教学。

余江燕[5](2021)在《高中函数教学中数学逆向思维能力培养的调查研究》文中进行了进一步梳理随着时代的不断进步,社会对创新型人才的需求逐渐增加,如何提升创新能力、培养创新型人才已经成为新时代国内外广泛关注的课题。提升创新能力,关键是要形成创新思维,而逆向思维作为创新思维的一种,在生产生活的各个领域中发挥着重要的作用。函数作为高中数学知识的主要内容之一,贯穿于高中数学课程的始终,蕴含着许多正逆之间的转换,因此,在高中函数教学中培养学生的数学逆向思维能力是有必要的,这有利于学生深入理解函数的本质,增强思维的灵活性。我国关于逆向思维及函数教学的研究逐年增加,但对学生逆向思维能力与函数教学的相关研究较少。因此,在已有研究的基础上,试图对高中生函数内容中数学逆向思维能力的培养现状展开测查,主要完成了如下任务:首先,整理分析国内外思维、逆向思维、数学逆向思维、函数教学相关文献,探讨总结出适合本研究的数学逆向思维相关概念。其次,对人教A版高中数学教材函数内容进行梳理统计,根据梳理内容结合已有相关研究编制师生调查问卷及测试卷,对K市两所高中各两个高二理科班的学生(共190名)及50名教师展开调查,分析学生数学逆向思维能力的培养现状及影响因素。最后,根据调查结果分析和相关理论研究,提出高中函数教学中数学逆向思维能力培养的建议。主要得出以下结论:(1)学生数学逆向思维能力的培养现状:学生在函数内容中的数学逆向思维能力处于中等或中等偏下水平。不同班级层次的学生之间数学逆向思维能力存在显着性差异,重点班优于普通班;不同性别的学生之间数学逆向思维能力不存在显着性差异。此外,数学逆向思维能力与学生的数学平时成绩呈显着正相关。对于在高中函数教学中培养学生的数学逆向思维能力,从认知情况来看,教师及学生总体上较为了解,并肯定数学逆向思维对学生个人发展的作用;从培养态度来看,教师及学生总体上均赞成在高中函数内容中培养学生的数学逆向思维能力;从培养方法来看,教师及学生普遍认同引导探究的教学模式,一题多解、变式训练、设计开放性题目等教学方法适合于培养数学逆向思维能力。(2)影响学生数学逆向思维能力发展的因素:通过对学生测试卷及师生问卷结果分析,结合访谈,得出影响学生数学逆向思维能力的主要因素包括学生思维能力、教师教学观念及能力、教学模式。(3)高中函数教学中逆向思维能力的培养建议:转变教师教学观念,提高教学能力;创设逆向情境,营造良好的学习氛围;在解题反思中提升数学逆向思维能力。

李超[6](2021)在《“高观点”下高中导数解题及教学研究》文中指出随着普通高中数学课程改革不断深入,《普通高中数学课程标准(2017年版2020年修订)》指出数学教师要理解与高中数学关系密切的高等数学内容,能够从更高的观点理解高中数学知识的本质,这对从事数学教育工作者的本体性知识(学科知识)提出了更高的要求.导数是连接高等数学和初等数学的重要桥梁,且部分导数试题的命制具有一定高等数学的背景.因此,这项研究选取高中导数内容,在“高观点”的指导下重点研究以下三个问题:(1)揭示部分高考导数试题具有的高等数学背景;(2)如何将高等数学的思想、观点和方法渗透到中学数学中去;(3)通过具体案例展示如何在“高观点”的指导下进行高中导数内容的解题和教学.这项研究通过对高中教师和学生的问卷调查,在“高观点”指导下研究高中导数内容的解题和教学,得出了以下两方面的结论:在解题方面,整理分析了近十年(以全国卷为主)具有高等数学背景的高考导数试题,导数试题的命题背景主要有四个方面:以高等数学中的基本定义和性质为命题背景、以高等数学中的重要定理和公式为命题背景、以着名不等式为命题背景、以高等数学中的重要思想方法为命题背景;总结了用“高观点”解决高考导数试题时常犯的四类错误:知识性错误、逻辑性错误、策略性错误、心理性错误;提出五项解题方法:创设引理破难题、洛氏法则先探路、导数定义避超纲、构造函数显神通、多元偏导先找点.在教学方面,通过对高中学生和高中教师进行问卷调查分析,从前人研究的基础上,提出“高观点”下高中导数教学的三个特点:衔接性、选择性、引导性;认为“高观点”下高中导数的教学应遵循四项基本的教学原则:严谨性原则、直观性原则、因材施教原则、量力性原则;提出相应的五项教学策略:开发例题,拓展升华策略、引入四规则,知识呈现多样化策略、先实践操作,后说理策略、融合信息技术,直观解释策略、引导方向,自主学习策略.

盛冰洁[7](2021)在《中学数学中三角函数的教学研究与解题分析》文中研究表明三角函数是我国中学数学课程中非常重要的内容之一,根据《普通高中数学课程标准》,三角函数被编排在新教材的必修4中,主要包含数学的数形合一、转化、化归、代换、特殊化等重要的数学思想,学生通过学习三角函数来培养“四基”和“四能”以及提升数学抽象、数学建模等等数学学科核心素养。基于十余年来的教学改革和研究,在中学数学三角函数中,已有众多教师学者在不同角度有着不同见解,但是并没有对三角函数的教学和解题作出系统全面的分析研究。为了让教师三角函数的教学过程更加细致,让学生学会三角函数并在解题中加以灵活利用,本篇论文将要研究中学数学中的三角函数教学,并对三角函数的解题进行分析。本论文主要采用文献阅读法,首先将对新世纪以来的社会背景、科技背景、历史地位、历史背景以及我国的实际情况等方面来做初步的介绍,同时引用《普通高中数学课程标准》中的一些基本理念与核心素养用来辅助解释。然后将从基础理论来浅谈数学学习、教学以及解题三个方面,接着汇总三角函数的一些基本知识,分别从初中和高中两个方面讲述三角函数的教学目标、教学内容,并利用图表以及公式分别简单的综合教材中三角函数的基本且重要的知识。最后将从中学数学三角函数的教学研究和中学数学三角函数的解题分析这两个方面来进行讲述,教学研究主要分析三角函数的概念教学、三角函数图像、性质教学以及公式、定理的教学,并以三个教学设计分别验证三角函数概念教学内容抽象,需创设情境;三角函数图像和性质教学需引导学生动手实验;三角函数公式、定理教学需演示证明过程。解题分析主要研究三角函数解题的一些应用,以及三角函数的解题方法,将证明学生解三角函数的题目需要掌握基础理论知识并培养一定的分析能力。通过对中学三角函数的教学进行研究并对中学三角函数的解题进行分析之后,将得出以下结论:教师在进行三角函数教学时需要注重培养学生的学习概念、性质、公式和定理的兴趣。将概念性质的教学融入现实生活中的令学生熟悉的背景。在教学时也不要忽略错误带来的益处,对学生产生错误的理解应该引导改正,凡事都有正反两面性,以错为鉴更能使学生对正确的概念、定义印象深刻。在教学上要注重主线,舍弃无关的知识点,抓住主体脉络。学生在利用三角函数解题时需要注重联系实际,引入数形结合思想,使复杂的问题简单化,使抽象的问题变得更加形象,借以优化解题的方式,加快解体的速度。并且要适应多种方法解题,要掌握多种方法来解题,能自我选择出最优解来解题。

朱钊[8](2021)在《初中数学学困生元认知训练的个案研究》文中研究说明在初中数学学习中,部分学生沦为数学学困生。元认知的缺乏是造成学困生学习困难的重要原因之一。二十世纪,数学家波利亚就已通过“怎样解题表”向世人传递着朴素的元认知训练方法。深入挖掘波利亚解题元认知思想,有针对性地进行元认知训练,对提高数学问题解决中的元认知水平具有重要作用。因此,本研究采用个案的方式,通过八周的两轮元认知训练,对选定的一名初二数学学困生的数学解题过程进行干预。具体的研究问题是:(1)基于元认知理论和波利亚解题表,如何建构出能够帮助元认知水平提高的“教师提问问题单”以及“自我提问问题单”?(2)如何针对初中数学学困生的元认知特征进行元认知训练?(3)使用“教师提问问题单”、“自我提问问题单”以及相应的元认知策略训练单能否提高初中数学学困生的数学问题解决元认知水平?本研究首先通过问卷调查法、访谈法和作业评定法对研究对象的元认知现状进行测量并就结果进行分析。其次,在元认知、波利亚解题元认知思想以及数学学困生元认知训练等相关文献研究的基础上,依据元认知三主因素九次因素和波利亚解题表建构出“教师提问问题单”和“自我提问问题单”,并介绍其使用策略,在几何证明专题中对研究对象的解题过程进行有引导的提问训练和解题反思训练。同时,基于解题经验精炼出相应的元认知策略训练单,供后续使用。八周的元认知训练结束后,再对研究对象的元认知水平进行测量分析,评估“教师提问问题单”、“自我提问问题单”以及相应的元认知策略训练单的有效性,并就研究结果进行总结与反思。研究结果表明:1.充分挖掘波利亚解题表中的元认知思想,精炼出更贴近于日常数学解题与教学的问题,并用元认知三主因素九次因素进行检验,建构出“教师提问问题单”与“自我提问问题单”;2.初中数学学困生在元认知策略与元认知监控方面的能力极为薄弱,通过“教师提问问题单”、“自我提问问题单”进行有引导的提问训练,并制定相应的元认知策略训练单,结合解题反思训练能够有效的提高初中数学学困生的数学问题解决元认知水平。3.使用“教师提问问题单”、“自我提问问题单”以及相应的元认知策略训练单对数学学困生进行元认知训练,能有效提高数学解题元认知能力,其中元认知监控方面的提高比较明显。

沈中宇[9](2021)在《面向教师教育的数学知识研究 ——以S市高中数学教研员为例》文中提出百年大计,教育为本。教育大计,教师为本。教师培养的关键是教师教育,要改善教师教育的效果,教师教育者的作用无疑是至关重要的,因此,数学教师教育者在数学教师教育中发挥着重要的作用。近年来,数学教育研究者开始关注数学教师教育者的研究,其中,“面向教师教育的数学知识”(Mathematical Knowledge for Teaching Teachers,简称MKTT)理论为研究一般数学教师教育者所需要的数学知识提供了借鉴。但已有的研究中对于“面向教师教育的数学知识”仍然缺乏清晰准确的刻画,同时,相关研究主要集中在理论构建,相关的实证研究较少。基于以上原因,本文以面向教师教育的数学知识为研究主题,选取高中数学教研员作为研究对象,主要探讨以下三个研究问题:(1)构成面向教师教育的数学知识的要素有哪些?(2)高中数学教研员具备哪些面向教师教育的数学知识?(3)在数学教研活动中,高中数学教研员反映出哪些面向教师教育的数学知识?针对本研究的三个研究问题,将研究设计分为三个阶段,分别为文献分析与框架确立、问卷调查与深度访谈以及现场观察与案例分析。文献分析与框架确立阶段采用了专家论证法。首先通过文献分析梳理已有的数学教师教育者专业知识框架,接着通过对相关的成分和子类别的反复比较,构建初始的面向教师教育的数学知识框架,最后通过三轮专家论证得到最终的面向教师教育的数学知识框架。问卷调查与深度访谈阶段采用了问卷调查法和深度访谈法。其中选取了高中数学中重要的数学主题编制了调查问卷和访谈提纲,通过编码分析高中数学教研员的问卷回答和访谈实录,从而了解高中数学教研员具备的面向教师教育的数学知识。现场观察与案例分析采用了案例研究法。其中观察了不同的高中数学教研员的多次教研活动,在观察过程中对教研活动进行录音并在观测后对高中数学教研员进行访谈,对录音和访谈材料进行编码和统计,从而剖析高中数学教研员在教研活动中反映的面向教师教育的数学知识。本研究的基本结论是:1.构成面向教师教育的数学知识的要素包括4个成分与12个子类别。构成成分为学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识。学科内容知识包含的子类别为一般内容知识、专门内容知识和关联内容知识,教学内容知识包含的子类别为内容与学生知识、内容与教学知识和内容与课程知识,高观点下的数学知识包含的子类别为学科高等知识、学科结构知识和学科应用知识,数学哲学知识包含的子类别为本体论知识、认识论知识和方法论知识。2.高中数学教研员具备的面向教师教育的数学知识情况如下。(1)高中数学教研员在学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识4个成分中并不存在明显的短板;(2)高中数学教研员对不同知识成分的掌握存在一定差异,其中,在学科内容知识和教学内容知识2个方面掌握较好,而在高观点下的数学知识和数学哲学知识2个方面还有所欠缺;(3)高中数学教研员在各个知识成分中有以下具体理解:在学科内容知识方面,对于基本的概念、定理和公式的合理性以及不同概念、定理和公式之间的联系较为熟悉;在教学内容知识方面,对于学生有关特定数学内容学习的困难,不同数学内容的教授方式和相关数学内容在教科书中的编排理解较深;在高观点下的数学知识方面,能够对中学数学知识作出一定程度的推广、涉猎不同学科中数学知识的应用;在数学哲学知识方面,能够大致解释数学定义的基本作用和标准、数学研究的动力、数学证明的作用和价值以及数学的基本思想方法。(4)高中数学教研员在各个知识成分中有以下欠缺之处:在学科内容知识方面,对于定义的多元性、解释的多样性和联系的普遍性方面还有进步的空间;在教学内容知识方面,对于学生数学学习困难的细致理解、不同数学内容的深入教授和教学内容编排意图的全面考虑还有提升的余地;在高观点下的数学知识方面,从高观点理解中学数学知识、分析不同知识的联系和在不同学科中应用数学知识方面还有较多需要完善的地方;在数学哲学知识方面,还不能形成系统的理解。3.在数学教研活动中,高中数学教研员反映出的面向教师教育的数学知识情况如下。(1)高中数学教研员反映的面向教师教育的数学知识大部分属于教学内容知识和学科内容知识,小部分属于数学哲学知识和高观点下的数学知识。(2)高中数学教研员在数学教研活动中的主要知识来源为一般内容知识、内容与教学知识、学科高等知识和方法论知识。(3)高中数学教研员在数学教研活动中反映的面向教师教育的数学知识主要有:在学科内容知识方面有数学中的基本概念、定理、公式和性质及其由来、表征、证明及解释;不同数学概念、定理、公式之间的联系。在教学内容知识方面有学生对特定数学内容理解存在的困难;不同数学内容的引入、辨析、应用和小结的教学方法;特定数学内容在课程标准中的要求和在教科书中的编排。在高观点下的数学知识方面有中学数学课程中的数学概念在高等数学中的推广;高观点下不同数学概念之间的联系;数学知识在现代科学和实际生活中的应用。在数学哲学知识方面有对数学定义的认识;对数学认识过程的理解;推理论证在数学中的作用;数学研究的思想方法。本研究对于教师教育者专业标准的制订、数学教师教育者专业培训的设计和数学教师专业发展项目的规划有一定启示,后续可以在数学教师教育者的专业知识、数学教师教育者的专业发展和数学教师教育者的工作实践等方面进一步开展研究。

王琼[10](2021)在《初中生数学解题能力的现状与提高研究》文中研究指明教学是教师的教和学生的学互相配合的教学过程,而解题是教师课堂教学的组成部分,是检验学生学习效果的一种有效的途径.当前新课标要求下数学解题能力的研究是热点问题.学校、教师、家长虽然尽了极大努力,但初中生的数学解题能力还是不尽人意,于是研究如何提高初中生数学解题能力很有必要.本文通过查阅文献,初步了解国内外学者对数学解题能力方面的研究,突出了数学解题能力在数学领域的重要性;然后阐述了研究背景、研究意义和研究方法.其次,对学生进行了问卷调查、访谈,通过对收集数据的统计和分析,了解初中生的数学学习状况和数学解题过程中存在的问题,并依据学生对数学解题的态度、知识技能的掌握情况、能否进行模仿、变式训练、系统地灵活运用所学知识等指标,对学生数学解题能力的高低进行了划分,分为五水平三层次,低级水平包含水平1和水平2,中级水平包含水平3和水平4,高级水平包含水平5.并依据波利亚的怎样解题、奥苏贝尔的有意义学习、维果斯基的最近发展区这三个理论基础来分析影响学生数学解题能力的因素:即题目因素、学生因素、教师因素、家庭因素和学校因素,最重要的是学生因素和教师因素.学生因素包含基础知识掌握得是否扎实,是否能保证运算正确率,是否了解数学思想、是否有数学思维、对数学的兴趣态度,能否及时反思等;教学因素包含教师的教学理念和教学方式,以及对学生的态度.同时,也关注了教师的专业发展和对父母的建议.结合教师访谈得到的宝贵经验,针对这些因素给出相应的措施:教师通过设置合适的数学题目、提高学生审题能力、强化学生基础知识、提高学生运算能力、课堂渗透数学思想、督促学生规范解题、强调题后反思等.实践表明,教师有意识地对学生进行数学解题指导,从而有利于培养学生的数学学习兴趣,有利于提高学生的数学解题能力,有利于学生学习素养的提升,有利于教师专业水平的提升,最关键是教会学生用数学的眼光去看待数学、用数学的思维去解题.

二、浅谈构造思维在数学解题中的应用(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、浅谈构造思维在数学解题中的应用(论文提纲范文)

(1)高中生数学逆向思维能力的现状调查研究与决策(论文提纲范文)

摘要
Abstract
第一章 绪论
    一、研究背景
    二、研究意义
        (一)理论意义
        (二)现实意义
    三、国内外研究现状
        (一)国外研究现状
        (二)国内研究现状
第二章 概念界定及理论基础
    一、相关概念的界定
        (一)思维
        (二)逆向思维
        (三)数学逆向思维能力
    二、理论基础
        (一)认知发展理论
        (二)多元智能理论
        (三)最近发展区理论
        (四)SOLO分类评价理论
第三章 高中生数学逆向思维能力的现状调查
    一、研究方法
    二、研究思路
    三、调查对象
    四、测试卷与访谈设计
        (一)学生测试卷的设计
        (二)教师访谈设计
    五、测试的实施与评价
    六、数据的收集与处理
    七、调查结果与分析
        (一)教师访谈结果与分析
        (二)测试卷结果分析
第四章 高中数学逆向思维能力现状的成因分析
    一、数学课堂的教学形式单一
    二、思维定势影响问题解决灵活性
    三、教学评价单一
    四、学生概括反思能力不足
    五、学生对问题思考度不足
    六、思维转换障碍与信心不足
第五章 高中生数学逆向思维能力培养的建议
    一、提高教师自身素质
    二、在课堂教学中加强对学生数学逆向思维能力的培养
        (一)加强数学概念教学中数学逆向思维能力的培养
        (二)加强数学公式教学中数学逆向思维能力的培养
        (三)加强数学定理教学中数学逆向思维能力的培养
        (四)加强数学方法教学中数学逆向思维能力的培养
结论
注释
参考文献
附录
    附录一
    附录二
攻读硕士学位期间发表的学术论文
致谢

(2)基于逆向思维探究初中平面几何辅助线方法研究(论文提纲范文)

摘要
abstract
第一章 绪论
    1.1 问题提出
    1.2 研究目的
    1.3 研究内容和意义
    1.4 研究方法和思路
第二章 文献综述与理论基础
    2.1 核心概念界定
    2.2 文献综述
    2.3 理论基础
第三章 初中平面几何辅助线添置教学现状调查分析
    3.1 调查目的及意义
    3.2 调查实施与数据处理
    3.3 调查结论
第四章 逆向思维探究平面几何辅助线构造方法
    4.1 作图基础方法和基本辅助线
    4.2 逆向思维在平面几何辅助线中的应用——分析法
    4.3 分析树模型探究辅助线构造
第五章 提高学生辅助线添置能力的教学案例分析
    5.1 平面几何辅助线解题教学案例
    5.2 解题教学案例分析
第六章 结论及教学建议
    6.1 研究结论
    6.2 研究不足
    6.3 教学建议
参考文献
附录
攻读硕士学位期间出版或发表的论着、论文
致谢

(3)基于波利亚解题思想下的高中三角函数解题策略研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    一、研究背景
        (一)《课标》对三角函数部分的要求
        (二)高考考纲对三角函数部分的要求
    二、研究内容
    三、研究意义
第二章 文献综述
    一、理论基础
        (一)波利亚的“怎样解题表”
        (二)波利亚的解题思想
    二、波利亚解题思想研究现状
        (一)国外研究现状
        (二)国内研究现状
    三、三角函数解题研究现状
        (一)三角函数解题障碍研究
        (二)三角函数解题模块研究
        (三)三角函数解题策略研究
    四、综述小结
第三章 波利亚解题思想在高中三角函数解题中的应用
    一、波利亚的解题思想在高中三角函数解题中应用的可行性分析
        (一)波利亚解题思想下的教学观、教师观、学生观分析
        (二)高中三角函数教材分析与考点解读
        (三)三角函数的解题障碍分析
    二、波利亚解题思想下的三角函数解题策略探究
        (一)理解题目阶段
        (二)拟定方案阶段
        (三)执行方案阶段
        (四)回顾反思阶段
第四章 运用三角函数解题策略解决三角函数典型问题
    一、同角三角函数的基本关系与诱导公式类问题
        (一)诱导公式的妙用类问题
        (二)sinx+cosx,sinx-cosx,sinxcosx之间的关系类问题
    二、三角函数图象和性质相关问题
        (一)由三角函数图象求解析式问题
        (二)由三角函数单调性求参数范围问题
    三、三角恒等变换问题
        (一)“角的变换”相关问题
        (二)三角函数与平面向量交汇问题
第五章 波利亚解题思想下的三角函数解题教学
    一、波利亚解题思想下的三角函数解题教学建议
        (一)理解题目阶段
        (二)拟定方案阶段
        (三)执行方案阶段
        (四)回顾反思阶段
    二、波利亚解题思想下的三角函数习题课教学设计案例
        (一)《正弦、余弦函数的图象与性质习题课》教学设计
        (二)《三角恒等变换习题课》教学设计
第六章 研究结论及展望
    一、研究结论
    二、研究不足
    三、研究展望
注释
参考文献
附录
攻读硕士期间所发表的学术论文
致谢

(4)学科核心素养视角下的数学思想方法教学研究(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 研究背景
    1.2 研究问题
    1.3 研究意义
        1.3.1 理论意义
        1.3.2 实践意义
2 数学思想方法与数学核心素养研究概述
    2.1 概念界定
        2.1.1 数学学科核心素养概念的界定
        2.1.2 数学思想方法概念的界定
    2.2 关于数学核心素养的相关研究
        2.2.1 数学核心素养的国外研究现状
        2.2.2 数学核心素养的国内研究现状
    2.3 关于数学思想方法的相关研究
    2.4 数学思想方法与数学核心素养
        2.4.1 数学思想方法在高中数学中的地位
        2.4.2 新课程理念倡导下的数学思想方法
        2.4.3 数学思想方法与数学核心素养的联系
    2.5 关于数学思想方法教学的相关研究
3 研究设计
    3.1 研究的思路
    3.2 研究的对象
    3.3 研究的方法
        3.3.1 文献研究法
        3.3.2 问卷调查法和访谈法
        3.3.3 课堂观察法
    3.4 调查工具的编制
        3.4.1 关于学生运用数学思想方法的水平测试
        3.4.2 关于教师的调查问卷及访谈
    3.5 调查的实施
4 前测结果的分析
    4.1 学生的前测结果分析
    4.2 教师问卷结果与分析
5 基于数学核心素养的数学思想方法教学实践探究
    5.1 掌握数学思想方法与达成数学核心素养目标的一致性
        5.1.1 对数形结合思想方法的分析
        5.1.2 对函数与方程思想方法的分析
        5.1.3 对分类讨论思想方法的分析
        5.1.4 对化归与转化思想方法的分析
    5.2 基于数学核心素养的数学思想方法教学策略
    5.3 基于数学核心素养的数学思想方法教学
        5.3.1 《利用函数的性质判定方程解的存在》的教学设计
        5.3.2 《平面向量的概念及其表示》的教学设计
6 后测的结果与分析
    6.1 学生测试结果与分析
    6.2 教师访谈结果的分析
7 结论与展望
    7.1 结论
    7.2 研究展望
参考文献
附录一 高中数学思想方法教学现状问卷调查表
附录二 前期测试卷
附录三 后期测试卷
附录四 高中数学教师访谈提纲
致谢

(5)高中函数教学中数学逆向思维能力培养的调查研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究背景
        1.1.1 社会发展对创新型人才的需求
        1.1.2 数学课程教学改革的要求
        1.1.3 函数在高中数学课程中的重要性
    1.2 研究内容
    1.3 研究意义
    1.4 研究思路
        1.4.1 研究计划
        1.4.2 研究技术路线
    1.5 论文结构
第2章 文献综述及理论基础
    2.1 思维相关研究
        2.1.1 国内思维研究综述
        2.1.2 国外思维研究综述
    2.2 逆向思维相关研究
        2.2.1 国内逆向思维能力研究综述
        2.2.2 国外逆向思维能力研究综述
    2.3 数学逆向思维相关研究
        2.3.1 国内数学逆向思维能力研究综述
        2.3.2 国外数学逆向思维能力研究综述
    2.4 函数教学相关研究
        2.4.1 国内函数教学研究综述
        2.4.2 国外函数教学研究综述
    2.5 核心概念界定
        2.5.1 思维与数学思维
        2.5.2 逆向思维
        2.5.3 数学逆向思维
    2.6 理论基础
        2.6.1 认知接受理论
        2.6.2 多元智能理论
        2.6.3 最近发展区理论
第3章 数学逆向思维在函数知识模块中的应用
    3.1 数学逆向思维解题策略
        3.1.1 反证法
        3.1.2 反例法
        3.1.3 逆转换元
        3.1.4 分析法
    3.2 逆向思维在函数知识教学中的应用
        3.2.1 函数概念
        3.2.2 函数性质
        3.2.3 基本初等函数
        3.2.4 函数的零点问题
        3.2.5 三角函数
        3.2.6 数列
        3.2.7 导数
第4章 研究设计
    4.1 研究目的
    4.2 研究对象的选取
    4.3 研究方法的说明
    4.4 研究工具的设计
        4.4.1 测试卷的设计
        4.4.2 调查问卷的设计
    4.5 数据的收集与整理
        4.5.1 数据的收集
        4.5.2 数据的整理
第5章 高中生数学逆向思维能力的调查结果及分析
    5.1 学生测试卷量化分析
        5.1.1 整体情况分析
        5.1.2 函数内容中数学逆向思维能力与班级层次的差异性分析
        5.1.3 函数内容中数学逆向思维能力与性别的差异性分析
        5.1.4 函数内容中数学逆向思维能力与数学平时成绩的相关性分析
    5.2 学生测试卷质性分析
        5.2.1 测试卷第1题
        5.2.2 测试卷第2题
        5.2.3 测试卷第3题
        5.2.4 测试卷第4题
        5.2.5 测试卷第5题
    5.3 学生问卷分析
    5.4 教师问卷分析
    5.5 研究结果
        5.5.1 高中函数教学中学生数学逆向思维能力培养现状
        5.5.2 影响因素
第6章 高中函数教学中逆向思维能力的培养建议
    6.1 转变教师教学观念,提高教学能力
        6.1.1 不断学习数学教学理论知识、更新教学观念
        6.1.2 充分钻研教材知识,在数学教学中渗透逆向思维方法
        6.1.3 丰富教学模式,给予学生思考的空间
    6.2 创设逆向情境,营造良好的学习氛围
        6.2.1 营造融洽平等的学习氛围
        6.2.2 创设正逆结合的学习情境
        6.2.3 倡导互助交流的学习方式
    6.3 在解题反思中提升数学逆向思维能力
第7章 研究的结论与反思
    7.1 研究结论
    7.2 研究反思
        7.2.1 研究不足
        7.2.2 研究展望
    7.3 结束语
参考文献
附录A 学生问卷
附录B 教师问卷
附录C 测试卷
攻读硕士期间发表的论文
致谢

(6)“高观点”下高中导数解题及教学研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究的背景
        1.1.1 数学教师专业素养发展的需要
        1.1.2 优秀高中学生自身发展的需求
        1.1.3 导数在高中数学教学及高考中的地位
    1.2 核心名词界定
        1.2.1 高观点
        1.2.2 导数
        1.2.3 数学教学
        1.2.4 解题
    1.3 研究的内容和意义
        1.3.1 研究的内容
        1.3.2 研究的意义
    1.4 研究的思路
        1.4.2 研究计划
        1.4.3 研究的技术路线
    1.5 论文的结构
第2章 文献综述
    2.1 文献搜集
    2.2 高观点下中学数学的研究现状
        2.2.1 国外研究的现状
        2.2.2 国内的研究现状
    2.3 高观点下高中导数的研究现状
        2.3.1 国外研究的现状
        2.3.2 国内研究的现状
    2.4 文献述评
    2.5 小结
第3章 研究设计
    3.1 研究的目的
    3.2 研究的方法
        3.2.1 文献研究法
        3.2.2 问卷调查法
        3.2.3 案例研究法
    3.3 研究工具及研究对象选取
    3.4 研究伦理
    3.5 小结
第4章 调查研究及结果分析
    4.1 教师调查问卷的设计及结果分析
        4.1.1 调查问卷设计
        4.1.2 实施调查
        4.1.3 调查结果分析
        4.1.3.1 问卷的信度分析
        4.1.3.2 问卷的效度分析
        4.1.3.3 问卷的结果分析
    4.2 学生调查问卷的设计及结果分析
        4.2.1 调查问卷设计
        4.2.2 实施调查
        4.2.3 调查结果及分析
    4.3 调查结论
    4.4 小结
第5章 “高观点”下高中导数的解题研究
    5.1 “高观点”下高考导数试题的命题背景
        5.1.1 以高等数学中的基本定义和性质为命题背景
        5.1.1.1 高斯函数
        5.1.1.2 函数的凹凸性
        5.1.2 以高等数学中的重要定理或公式为命题背景
        5.1.2.1 洛必达法则
        5.1.2.2 拉格朗日中值定理
        5.1.2.3 拉格朗日乘数法
        5.1.2.4 柯西中值定理
        5.1.2.5 柯西函数方程
        5.1.2.6 泰勒公式与麦克劳林公式
        5.1.2.7 极值的第三充分条件
        5.1.2.8 两个重要极限
        5.1.2.9 欧拉常数
        5.1.3 以着名不等式为命题背景
        5.1.3.1 伯努利不等式
        5.1.3.2 詹森不等式
        5.1.3.3 对数平均不等式
        5.1.3.4 斯外尔不等式
        5.1.3.5 惠更斯不等式
        5.1.3.6 约当不等式
        5.1.4 以高等数学中的重要思想方法为命题背景
        5.1.4.1 极限思想
        5.1.4.2 积分思想
        5.1.4.3 (常微分)方程思想
    5.2 “高观点”下高考导数解题中常见的四类错误
        5.2.1 知识性错误
        5.2.1.1 柯西中值定理的误用
        5.2.1.2 拉格朗日中值定理的误用
        5.2.1.3 多元函数求最值,不注意边界情况
        5.2.1.4 不注意洛必达法则使用的前提
        5.2.2 逻辑性错误
        5.2.2.1 循环论证
        5.2.2.2 混淆充分条件和必要条件的逻辑关系
        5.2.3 策略性错误
        5.2.4 心理性错误
    5.3 “高观点”下高考导数解题的方法
        5.3.1 创设引理破难题
        5.3.2 洛氏法则先探路
        5.3.3 导数定义避超纲
        5.3.4 构造函数显神通
        5.3.5 多元偏导先找点
    5.4 “高观点”下高考导数解题研究的案例
        5.4.1 “高观点”视角研究解题方法
        5.4.2 “高观点”视角研究试题的命制
    5.5 小结
第6章 “高观点”下高中导数的教学研究
    6.1 “高观点”下高中导数教学的教学特点
        6.1.1 衔接性
        6.1.2 选择性
        6.1.3 引导性
    6.2 “高观点”下高中导数教学的教学原则
        6.2.1 严谨性原则
        6.2.2 直观性原则
        6.2.3 因材施教原则
        6.2.4 量力性原则
    6.3 “高观点”下高中导数教学的教学策略
        6.3.1 开发例题,拓展升华策略
        6.3.2 引入四规则,知识呈现多样化策略
        6.3.3 先实践操作,后说理策略
        6.3.4 融合信息技术,直观解释策略
        6.3.5 引导方向,自主学习策略
    6.4 “高观点”下高中导数的教学案例
        6.4.1 常微分方程视角下的教学案例
        6.4.2 微积分视角下的教学案例
        6.4.3 “泰勒公式”的教学案例
    6.5 小结
第7章 结论与反思
    7.1 研究的结论
    7.2 研究的不足及展望
    7.3 结束语
参考文献
附录 A 教师调查问卷
附录 B 学生调查问卷
攻读学位期间发表的论文和研究成果
致谢

(7)中学数学中三角函数的教学研究与解题分析(论文提纲范文)

摘要
abstract
第一章 引言
第二章 关于数学解题及教学的基本理论浅谈
    2.1 学习的基本理论
        2.1.1 行为主义学习理论
        2.1.2 认知主义学习理论
        2.1.3 建构主义学习理论
    2.2 数学教学的基本理论
    2.3 数学解题的基本理论
        2.3.1 数学问题的概念
        2.3.2 数学解题的概念
        2.3.3 数学解题的方法
    2.4 小结
第三章 中学数学中三角函数的基本内容
    3.1 中学数学中三角函数的地位
        3.1.1 三角函数在中学教材中的位置
        3.1.2 三角函数在中学解题中的地位
        3.1.3 三角函数在思想方法上的作用
    3.2 中学数学中三角函数的教学内容
        3.2.1 初中三角函数的教学内容
        3.2.2 高中三角函数的教学内容
    3.3 中学数学中三角函数的教学目标
        3.3.1 初中三角函数的教学目标
        3.3.2 高中三角函数的教学目标
第四章 中学数学三角函数的教学研究与解题分析
    4.1 中学数学三角函数的教学研究
        4.1.1 三角函数概念的教学
        4.1.2 三角函数图像、性质的教学
        4.1.3 三角函数公式、定理的教学
    4.2 中学数学三角函数的解题分析
        4.2.1 三角函数的解题的基本应用
        4.2.1.1 三角函数在几何解题中的应用
        4.2.1.2 三角函数在代数解题中的应用
        4.2.1.3 三角函数在最值解题中的应用
        4.2.2 三角函数的解题方法
        4.2.2.1 换元法
        4.2.2.2 数形结合法
        4.2.2.3 数学模型法
第五章 结论
    5.1 个人观点总结
    5.2 关于三角函数在教学上的建议
    5.3 关于三角函数在解题上的建议
参考文献
作者简介
作者在攻读硕士学位期间获得的学术成果
致谢

(8)初中数学学困生元认知训练的个案研究(论文提纲范文)

摘要
Abstract
第1章 引言
    1.1 研究背景
        1.1.1 数学课程标准的要求
        1.1.2 元认知在数学解题中的重要作用
        1.1.3 波利亚解题表中的元认知思想
        1.1.4 在一对一环境下开展的连续性的元认知训练的研究较少
    1.2 研究问题
    1.3 研究方法
    1.4 研究意义
    1.5 研究思路
第2章 文献综述
    2.1 元认知相关概述
        2.1.1 元认知的含义
        2.1.2 元认知的成分
        2.1.3 元认知的一般测量方法
        2.1.4 数学元认知
        2.1.5 数学元认知在数学问题解决中的作用
    2.2 数学学困生的元认知训练相关研究
        2.2.1 学困生与数学学困生的含义
        2.2.2 数学学困生的元认知特征
        2.2.3 数学学困生的元认知训练
    2.3 波利亚解题元认知思想
        2.3.1 波利亚及怎样解题表的认识
        2.3.2 波利亚解题表中的元认知知识
        2.3.3 波利亚解题表中的元认知体验
        2.3.4 波利亚解题表中的元认知监控
第3章 研究设计
    3.1 研究对象的选取
    3.2 研究对象的基本情况
    3.3 研究过程
    3.4 研究工具
        3.4.1 元认知测量工具
        3.4.2 元认知训练工具
    3.5 研究对象元认知水平现状的调查结果
        3.5.1 来自元认知问卷前测的结果与分析
        3.5.2 来自元认知访谈的结果与分析
第4章 元认知训练的实施与结果分析
    4.1 第一轮元认知训练
        4.1.1 第一轮元认知训练计划
        4.1.2 训练计划的实施过程
        4.1.3 训练计划的实施结果与反思
    4.2 第二轮元认知训练
        4.2.1 第二轮元认知训练计划
        4.2.2 训练计划的实施过程
        4.2.3 训练计划的实施结果与反思
    4.3 两轮元认知训练的结果与总结
        4.3.1 来自数学测试题后测的结果与分析
        4.3.2 来自元认知问卷后测的结果与分析
        4.3.3 来自元认知访谈的结果与分析
第5章 研究结论与反思
    5.1 研究结论
    5.2 数学学困生元认知训练的相关建议
        5.2.1 对数学学困生的元认知训练要长期坚持
        5.2.2 元认知训练应落实到具体的数学专题上
        5.2.3 重视加强对元认知策略的训练
        5.2.4 重视加强对题后反思的训练
    5.3 研究反思
        5.3.1 研究不足
        5.3.2 推广的思考
参考文献
附录A 波利亚解题表
附录B“数学测试题”前测
附录C“数学测试题”后测
附录D 数学问题解决中的元认知问卷量表
致谢

(9)面向教师教育的数学知识研究 ——以S市高中数学教研员为例(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 研究背景
        1.1.1 教师教育者的专业发展需要关注
        1.1.2 数学教师教育者的研究值得重视
        1.1.3 数学教师教育者的专业知识有待探索
    1.2 研究问题
    1.3 研究意义
        1.3.1 理论意义
        1.3.2 实践意义
    1.4 论文结构
第2章 文献述评
    2.1 数学教师教育者的专业知识
        2.1.1 数学教师教育者的专业知识框架
        2.1.2 数学教师教育者的专业知识测评
        2.1.3 文献小结
    2.2 数学教师教育者的专业发展
        2.2.1 数学教师教育者的专业发展框架
        2.2.2 数学教师教育者的专业发展调查
        2.2.3 文献小结
    2.3 数学教师教育者的工作实践
        2.3.1 数学教师教育课堂的学习任务框架
        2.3.2 数学教师教育课堂的学习任务实践
        2.3.3 文献小结
    2.4 文献述评总结
第3章 研究方法
    3.1 研究设计
        3.1.1 文献分析与框架确立
        3.1.2 问卷调查与深度访谈
        3.1.3 现场观察与案例分析
    3.2 研究对象
        3.2.1 专家论证对象
        3.2.2 问卷调查对象
        3.2.3 深度访谈对象
        3.2.4 案例研究对象
    3.3 研究工具
        3.3.1 论证手册
        3.3.2 调查问卷
        3.3.3 访谈提纲
        3.3.4 观察方案
    3.4 数据收集
        3.4.1 专家论证
        3.4.2 问卷调查
        3.4.3 深度访谈
        3.4.4 现场观察
    3.5 数据分析
        3.5.1 专家论证
        3.5.2 问卷与访谈
        3.5.3 现场观察
第4章 研究结果(一):面向教师教育的数学知识框架
    4.1 文献分析
        4.1.1 已有框架选取
        4.1.2 相关成分析取
        4.1.3 相关类别编码
    4.2 框架构建
        4.2.1 相关类别合并
        4.2.2 相应成分生成
        4.2.3 初步框架构建
    4.3 框架论证
        4.3.1 第一轮论证
        4.3.2 第二轮论证
        4.3.3 第三轮论证
第5章 研究结果(二):高中数学教研员具备的面向教师教育的数学知识
    5.1 学科内容知识
        5.1.1 一般内容知识
        5.1.2 专门内容知识
        5.1.3 关联内容知识
    5.2 教学内容知识
        5.2.1 内容与学生知识
        5.2.2 内容与教学知识
        5.2.3 内容与课程知识
    5.3 高观点下的数学知识
        5.3.1 学科高等知识
        5.3.2 学科结构知识
        5.3.3 学科应用知识
    5.4 数学哲学知识
        5.4.1 本体论知识
        5.4.2 认识论知识
        5.4.3 方法论知识
    5.5 总体分析
        5.5.1 学科内容知识
        5.5.2 教学内容知识
        5.5.3 高观点下的数学知识
        5.5.4 数学哲学知识
第6章 研究结果(三):数学教研活动中反映的面向教师教育的数学知识
    6.1 案例1
        6.1.1 第一轮观察:平均值不等式
        6.1.2 第二轮观察:对数的概念
        6.1.3 案例1 总体分析
    6.2 案例2
        6.2.1 第一轮观察:幂函数的概念
        6.2.2 第二轮观察:函数的基本性质
        6.2.3 案例2 总体分析
    6.3 案例3
        6.3.1 第一轮观察:幂函数的概念
        6.3.2 第二轮观察:出租车运价问题
        6.3.3 案例3 总体分析
    6.4 案例4
        6.4.1 第一轮观察:反函数的概念
        6.4.2 第二轮观察:反函数的图像
        6.4.3 案例4 总体分析
    6.5 跨案例分析
        6.5.1 学科内容知识
        6.5.2 教学内容知识
        6.5.3 高观点下的数学知识
        6.5.4 数学哲学知识
        6.5.5 案例总体分析
第7章 研究结论及启示
    7.1 研究结论
        7.1.1 面向教师教育的数学知识框架
        7.1.2 高中数学教研员具备的面向教师教育的数学知识
        7.1.3 高中数学教研活动中反映的面向教师教育的数学知识
    7.2 研究启示
        7.2.1 教师教育者的专业标准制订需要关注学科性
        7.2.2 数学教师教育者的专业培训需要提升针对性
        7.2.3 数学教师专业发展项目规划需要增加多元性
    7.3 研究局限
    7.4 研究展望
        7.4.1 拓展数学教师教育者的专业知识研究
        7.4.2 深入数学教师教育者的专业发展研究
        7.4.3 延伸数学教师教育者的工作实践研究
参考文献
附录
    附录1 论证手册(第一轮)
    附录2 论证手册(第二轮)
    附录3 论证手册(第三轮)
    附录4 调查问卷(第一版)
    附录5 调查问卷(第二版)
    附录6 调查问卷(第三版)
    附录7 调查问卷(第四版)
    附录8 调查问卷(第五版)
    附录9 访谈提纲
    附录10 观察方案
作者简历及在学期间所取得的科研成果
致谢

(10)初中生数学解题能力的现状与提高研究(论文提纲范文)

中文摘要
Abstract
第1章 绪论
    1.1 研究背景
    1.2 研究意义
    1.3 研究内容
    1.4 研究方法
第2章 文献综述与理论基础
    2.1 概念界定
        2.1.1 能力
        2.1.2 数学能力
        2.1.3 数学解题能力
    2.2 国内外研究综述
        2.2.1 国外相关研究综述
        2.2.2 国内相关研究综述
    2.3 理论基础
第3章 初中生数学解题能力的现状调查与分析
    3.1 初中生数学学习状况的调查
        3.1.1 调查对象、调查目的、调查方法
        3.1.2 初中生数学学习状况分析
    3.2 初中生数学解题能力的调查
        3.2.1 调查对象、调查目的、调查方法
        3.2.2 调查结果分析
    3.3 数学解题能力高低的划分
第4章 影响数学解题能力的因素分析
    4.1 数学题目因素
        4.1.1 数学问题情境的设置
        4.1.2 数学问题文字的表述
        4.1.3 数学问题的难易程度
        4.1.4 问题的不同类型
    4.2 学生因素
        4.2.1 审题意识不强
        4.2.2 基础知识不扎实
        4.2.3 运算能力不强
        4.2.4 思想方法意识不强
        4.2.5 思维能力不强
        4.2.6 解题不规范
        4.2.7 题后不反思
        4.2.8 学生的情感因素
    4.3 教师教学因素
        4.3.1 备课是否充分
        4.3.2 教学理念和教学方式
        4.3.3 是否因材施教
        4.3.4 教师对待学生的态度
        4.3.5 是否有责任心
    4.4 家庭因素
    4.5 学校因素
第5章 提高初中生数学解题能力的措施
    5.1 教师设置适当的数学题目
    5.2 教师课堂上对学生的指导
        5.2.1 提高学生审题能力
        5.2.2 强化基础知识
        5.2.3 提高学生运算技能
        5.2.4 渗透数学思想
        5.2.5 注重变式,培养学生思维能力
        5.2.6 督促学生规范解题
        5.2.7 强调题后反思
        5.2.8 加强对学生学习方法的指导
    5.3 教师课外对学生的指导
    5.4 教师针对个性差异的学生采取的指导措施
    5.5 教师自身
    5.6 家庭方面
    5.7 学校方面
结束语
参考文献
附录一 初中生数学学习状况调査问卷
附录二 中学生数学解题能力状况调査问卷(学生卷)
附录三 教师访谈提纲
附录四 教师访谈提纲
致谢

四、浅谈构造思维在数学解题中的应用(论文参考文献)

  • [1]高中生数学逆向思维能力的现状调查研究与决策[D]. 杨雨桐. 哈尔滨师范大学, 2021(08)
  • [2]基于逆向思维探究初中平面几何辅助线方法研究[D]. 易梦. 淮北师范大学, 2021(12)
  • [3]基于波利亚解题思想下的高中三角函数解题策略研究[D]. 王秋硕. 哈尔滨师范大学, 2021(08)
  • [4]学科核心素养视角下的数学思想方法教学研究[D]. 刘印平. 江西师范大学, 2021(12)
  • [5]高中函数教学中数学逆向思维能力培养的调查研究[D]. 余江燕. 云南师范大学, 2021(08)
  • [6]“高观点”下高中导数解题及教学研究[D]. 李超. 云南师范大学, 2021(08)
  • [7]中学数学中三角函数的教学研究与解题分析[D]. 盛冰洁. 安庆师范大学, 2021(12)
  • [8]初中数学学困生元认知训练的个案研究[D]. 朱钊. 上海师范大学, 2021(07)
  • [9]面向教师教育的数学知识研究 ——以S市高中数学教研员为例[D]. 沈中宇. 华东师范大学, 2021(08)
  • [10]初中生数学解题能力的现状与提高研究[D]. 王琼. 扬州大学, 2021(09)

标签:;  ;  ;  ;  ;  

浅谈建构性思维在数学解题中的应用
下载Doc文档

猜你喜欢